

Relating Structure & Power

... using Game Comonads
Towards generalisations of modal logic

Elena Dimitriadis Tyler Hanks Zhixuan Yang Richie
Yeung Dan Marsden Nihil Shah

August 4, 2023

Outline

- ▶ Intro to finite model theory and game comonads
- ▶ Applications to modal logic generalisations

What and Why of Finite Model Theory

Finite model theory studies the expressive power of logics on finite models.

- ▶ Finite graphs
- ▶ Databases

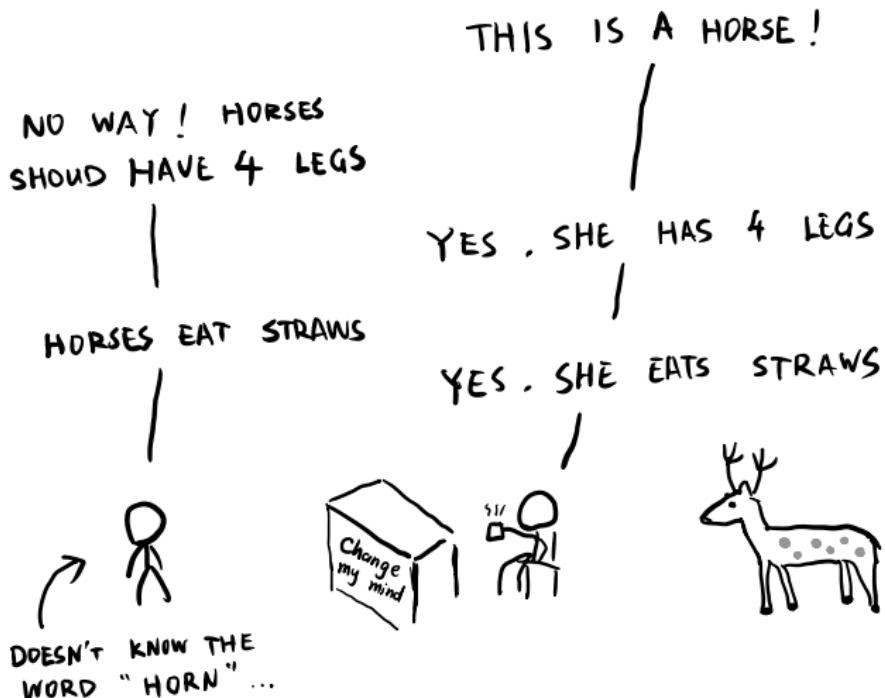
Definition

A relational vocabulary σ is a collection of relation symbols (P_1, \dots) each with an associated arity.

Definition

A σ -structure $\mathcal{A} = \langle A, \{P_i^A\} \rangle$ consists of a universe A **together with an interpretation** of each k -ary relation symbol as a k -ary relation on A .

Games on Logics



$$\mathcal{A} \equiv^{\mathcal{L}} \mathcal{B} := \forall \phi \in \mathcal{L}. \mathcal{A} \models \phi \iff \mathcal{B} \models \phi$$

Example: Ehrenfeucht-Fraïssé Game

Theorem (Existential Ehrenfeucht-Fraïssé).

Let \mathcal{A} and \mathcal{B} be two structures in a relational vocabulary. Then the following are equivalent.

- ▶ \mathcal{A} and \mathcal{B} agree on the set of existential positive FO formulae up to quantifier rank k , notated $\exists^+ \text{FO}[k]$.
- ▶ There is a winning strategy for the duplicator in the k round existential EF game, notated $\mathcal{A} \equiv_k \mathcal{B}$.
- ▶ There is a coKleisli morphism $f: \mathbb{E}_k \mathcal{A} \rightarrow \mathcal{B}$.

Ehrenfeucht-Fraïssé Games/Comonads [AS21]

- ▶ \mathbb{E}_k is a comonad on the category of σ -structures.
- ▶ The universe of $\mathbb{E}_k\mathcal{A}$ is the set of spoiler plays, i.e. non-empty sequences of elements of A .
- ▶ The counit $\epsilon_{\mathcal{A}}$ returns the last move of a play.
- ▶ $R^{\mathbb{E}_k}\mathcal{A}(s_1, \dots, s_n) \iff$

$$\forall i, j \in [n]. (s_i \sqsubseteq s_j \vee s_j \sqsubseteq s_i) \wedge R^{\mathcal{A}}(\epsilon(s_1, \dots, \epsilon(s_n)))$$

- ▶ For $f: \mathbb{E}_k\mathcal{A} \rightarrow \mathcal{B}$, the coextension $f^*: \mathbb{E}_k\mathcal{A} \rightarrow \mathbb{E}_k\mathcal{B}$ is defined recursively as

$$f^*(s \#[a]) := f^*(s) \#[f([a])]$$

EF Games/Comonads cont.[AS21]

- ▶ $f : \mathbb{E}_k \mathcal{A} \rightarrow \mathcal{B}$ encodes the duplicator response to a given spoiler play, i.e. a duplicator strategy.
- ▶ f preserving relations implies that the duplicator strategy is *winning*.
- ▶ Coextension $f^* : \mathbb{E}_k \mathcal{A} \rightarrow \mathbb{E}_k \mathcal{B}$ models history preservation of the game.

Coalgebras of Game Comonads

Why do we care about game comonads?

- ▶ Capture multiple model comparison games with a single abstraction.

The coalgebras of the \mathbb{E}_k / \mathbb{P}_k / \mathbb{M}_k correspond to ...

- ▶ the **tree-depth** / **tree-width** / **synchronisation tree depth**
- ▶ ... of a tree cover
- ▶ ... of the Gaifman graph of $\mathcal{G}(\mathcal{A})$

Outline

- ▶ Intro to finite model theory and game comonads
- ▶ Applications to modal logic generalisations

Restricting First Order Logic [Var96]

- ▶ FOL is great but its SAT problem is undecidable.
- ▶ The SAT problem of Modal logic is *robustly decidable*, but lacks expressive power.
- ▶ We can view modal logic as a fragment of FOL.

Can we extend modal logic without losing SAT?

YES!

- ▶ Unary-negation fragment of FO
- ▶ Ordered fragments of FO

The UNFO fragment [SC13]

- ▶ $\phi, \psi := x \mid R(\vec{x}) \mid \phi \wedge \psi \mid \phi \vee \psi \mid \exists x. \phi \mid x_1 = x_2 \mid \neg \phi(x)$.
- ▶ We can only negate when there's one single free variable.
- ▶ We can only write \forall for one single free variable.
- ▶ We can **not** write $x \neq y$!

$$\neg \exists y, z, u. E(x, y) \wedge E(y, z) \wedge E(z, u) \wedge R(u, x) \quad \checkmark$$
$$\neg \exists x. R(x, y, z) \quad \times$$

The UNFO game [SC13]

Let us have two structures, A and B . We have a starting position, $(a, b) = (\perp, \perp)$.

1. Spoiler chooses a structure. Say A .
2. Spoiler chooses a subset $V \subseteq A$.
3. Duplicator gives a partial homomorphism $h : A \rightarrow B$ defined on V , such that $h(a) = b$.
4. Spoiler chooses an element $a' \in V$, and fixes a new $(a, b) = (a', h(a'))$.

Duplicator wins the k round if they can give such a partial homomorphism.

An equivalent game: the Pebble UNFO game

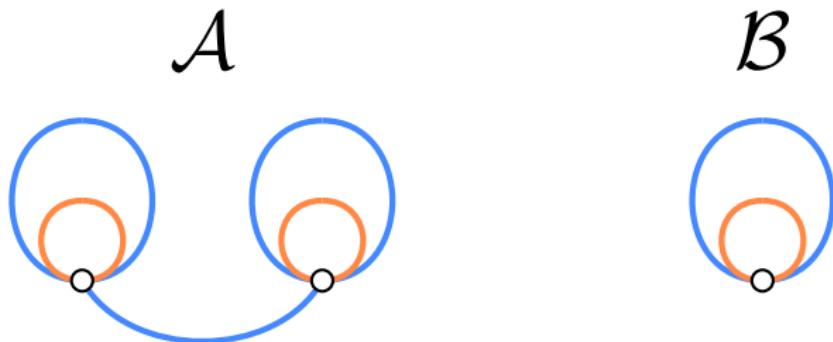
Let us have two structures, \mathcal{A} and \mathcal{B} .

- ▶ Spoiler chooses a structure. As long as they stay in that one, the game goes like in the EF case.
- ▶ When the Spoiler changes structure, they choose a play (a, b) and forget the rest. The game then continues like the EF case.

Duplicator wins the round if the current board forms a partial homomorphism.

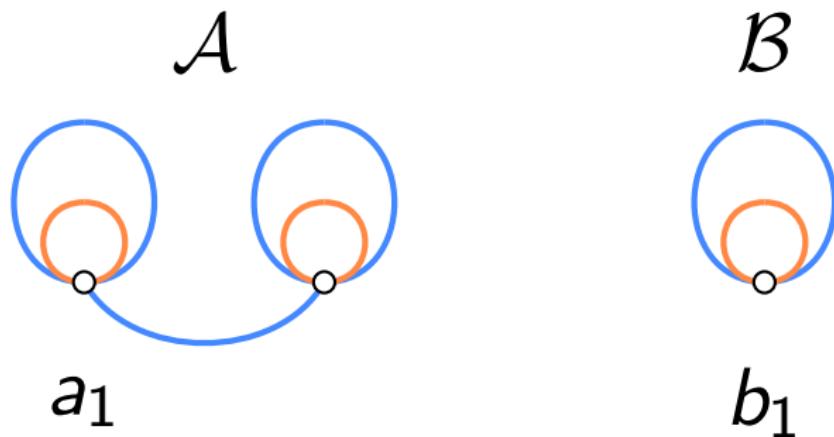
- ▶ We can write a variant where instead of choosing a play (a, b) we just keep the last play.
- ▶ These two versions are equivalent to the original UNFO game.

Smiley



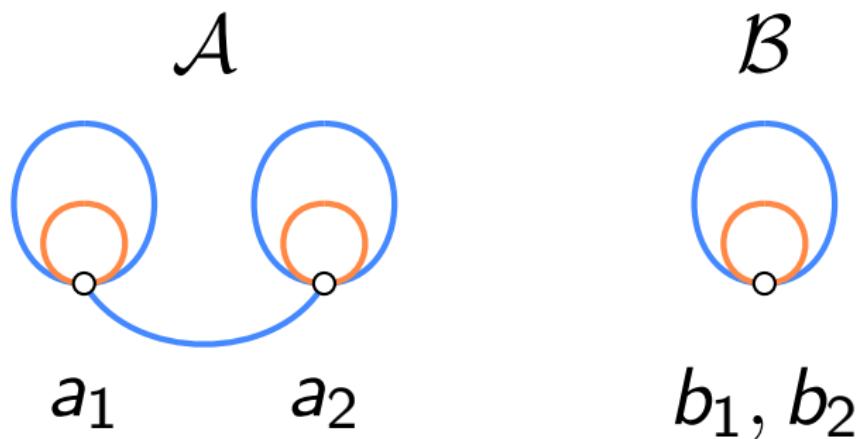
$$\exists x. \exists y. B(x, y) \wedge \neg R(x, y)$$

Smiley

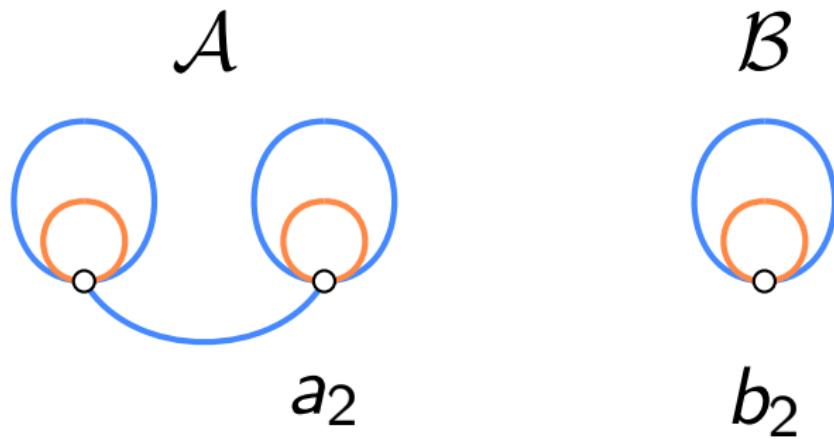


$$\exists x. \exists y. B(x, y) \wedge \neg R(x, y)$$

Smiley



$$\exists x. \exists y. B(x, y) \wedge \neg R(x, y)$$



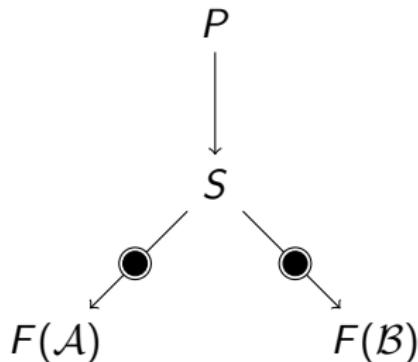
$$\exists x. \exists y. B(x, y) \wedge \neg R(x, y)$$

Span of Open Pathwise Embeddings

Theorem [AS21]

The existence of a span of open pathwise embeddings in the $\text{EM}(\mathbb{E}_k)$ corresponds to

- ▶ a duplicator winning strategy in the *back and forth* EF-game.
- ▶ $\mathcal{A} \equiv^{FO} \mathcal{B}$.



Extending to Pebble-UNFO Game

Ordered fragments of First Order logic [BJ22]

- ▶ Variables can only appear in the order they are introduced.
- ▶ **Prefix fragment**: using only prefixes. (PL)
- ▶ **Infix fragment**: any infix is valid. (IL)
- ▶ **Fluted fragment**: using only postfixes. (FL)

	PL	IL	FL
$\exists x_1, x_2, x_3, R(x_1, x_2)$	✓	✓	✗
$\exists x_1, x_2, x_3, R(x_2)$	✗	✓	✗
$\exists x_1, x_2, x_3, R(x_2, x_3)$	✗	✓	✓
$\exists x_1, x_2, x_3, R(x_3, x_2)$	✗	✗	✗
$\exists x_1, x_2, x_3, R(x_1, x_1)$	✗	✗	✗

Comonadification of Ordered Fragments

- ▶ We found comonads for all 3 fragments!

The coalgebras of the comonad correspond to ...

- ▶ the **directed forest height**
- ▶ ... of a forest cover
- ▶ ... of the Gaifman graph of $\mathcal{G}(\mathcal{A})$

Ongoing Work

- ▶ Extend ordered fragment comonads to allow variable rebinding.
- ▶ Formalize coherence conditions for span representation of UNFO game.

Bibliography I

- [AS21] Samson Abramsky and Nihil Shah. “Relating structure and power: Comonadic semantics for computational resources”. In: *Journal of Logic and Computation* 31.6 (2021), pp. 1390–1428.
- [BJ22] Bartosz Bednarczyk and Reijo Jaakkola. “Towards a Model Theory of Ordered Logics: Expressivity and Interpolation”. In: *47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria*. Ed. by Stefan Szeider, Robert Ganian, and Alexandra Silva. Vol. 241. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 15:1–15:14.
- [SC13] Luc Segoufin and Balder ten Cate. “Unary negation”. In: *Logical Methods in Computer Science (LMCS)* 9 (2013).

Bibliography II

[Var96] Moshe Y. Vardi. “Why is Modal Logic So Robustly Decidable?” In: *Descriptive Complexity and Finite Models, Proceedings of a DIMACS Workshop 1996, Princeton, New Jersey, USA, January 14-17, 1996*. Ed. by Neil Immerman and Phokion G. Kolaitis. Vol. 31. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. DIMACS/AMS, 1996, pp. 149–183.

Category of σ -structures

Definition

Given a relational vocabulary σ , the category $\mathcal{R}(\sigma)$ has

- ▶ objects are σ -structures,
- ▶ a morphism $\mathcal{A} \rightarrow \mathcal{B}$ is a structure homomorphism, i.e. a set-function $h: A \rightarrow B$ that preserves relations:

$$R^{\mathcal{A}}(a_1, \dots, a_n) \implies R^{\mathcal{B}}(h(a_1), \dots, h(a_n)) \quad (1)$$

for all $R \in \sigma$.

Chapter 3: Ehrenfeucht-Fraïssé Games

The Ehrenfeucht-Fraïssé game is a two-player sequential move game with the following components.

Players:

- ▶ Spoiler
- ▶ Duplicator

Board: two structures, e.g. \mathfrak{A} and \mathfrak{B}

Goal:

- ▶ Spoiler wants to show that the two structures are different
- ▶ Duplicator wants to show that the two structures are the same

Chapter 3: Ehrenfeucht-Fraïssé Games

How to play:

- ▶ The players play a certain number of rounds.
- ▶ In each round, the spoiler picks a structure \mathfrak{A} or \mathfrak{B} and an element of that structure $a \in \mathfrak{A}$ or $b \in \mathfrak{B}$.
- ▶ The duplicator responds by picking an element from the other structure.

Winning:

- ▶ Let $\vec{a} = (a_1, \dots, a_n)$ and $\vec{b} = (b_1, \dots, b_n)$ be the moves played after n rounds of an E-F Game. Also, let $\vec{c}^{\mathfrak{A}}$ denote $(c_1^{\mathfrak{A}}, \dots, c_l^{\mathfrak{A}})$ and similarly for $\vec{c}^{\mathfrak{B}}$.
- ▶ (\vec{a}, \vec{b}) is a winning position for the duplicator if $((\vec{a}, \vec{c}^{\mathfrak{A}}), (\vec{b}, \vec{c}^{\mathfrak{B}}))$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B} .
- ▶ When the duplicator has an n -round winning strategy, write $\mathfrak{A} \equiv_n \mathfrak{B}$.