

Adjoint School Research Direction

Nice generalisations of modal logic

Dan Marsden and Nihil Shah

July 14, 2023

Modal logic

Syntax

$$\varphi = p \mid \varphi \wedge \varphi \mid \neg \varphi \mid \diamond \varphi$$

Semantics via FO

Semantics via the **standard translation** to a unary formula in first-order logic:

$$\llbracket p \rrbracket_x = P(x)$$

$$\llbracket \varphi \wedge \psi \rrbracket_x = \llbracket \varphi \rrbracket_x \wedge \llbracket \psi \rrbracket_x$$

$$\llbracket \neg \varphi \rrbracket_x = \neg \llbracket \varphi \rrbracket_x$$

$$\llbracket \diamond \varphi \rrbracket_x = \exists y. E(x, y) \wedge \llbracket \varphi \rrbracket_y$$

High level attributes of modal logic

Modal Logic

- ▶ Is computationally very well behaved.
- ▶ Is model theoretically very well behaved.
- ▶ These properties are robust to extensions such as backwards or global modalities.
- ▶ Lacks expressive power.

High level attributes of modal logic

Modal Logic

- ▶ Is computationally very well behaved.
- ▶ Is model theoretically very well behaved.
- ▶ These properties are robust to extensions such as backwards or global modalities.
- ▶ Lacks expressive power.

Famous Paper

Vardi. "Why is Modal Logic So Robustly Decidable?", 1996.

Finding nice generalisations of the modal fragment

Inspecting the standard translation:

$$[\![p]\!]_x = P(x)$$

$$[\![\varphi \wedge \psi]\!] = [\![\varphi]\!]_x \wedge [\![\psi]\!]_x$$

$$[\![\neg \varphi]\!]_x = \neg [\![\varphi]\!]_x$$

$$[\![\diamond \varphi]\!]_x = \exists y. E(x, y) \wedge [\![\varphi]\!]_y$$

We might make the following observations:

Finding nice generalisations of the modal fragment

Inspecting the standard translation:

$$\llbracket p \rrbracket_x = P(x)$$

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket_x \wedge \llbracket \psi \rrbracket_x$$

$$\llbracket \neg \varphi \rrbracket_x = \neg \llbracket \varphi \rrbracket_x$$

$$\llbracket \Diamond \varphi \rrbracket_x = \exists y. E(x, y) \wedge \llbracket \varphi \rrbracket_y$$

We might make the following observations:

- ▶ Translated formulae only require two variables (with a bit of care).

Finding nice generalisations of the modal fragment

Inspecting the standard translation:

$$\llbracket p \rrbracket_x = P(x)$$

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket_x \wedge \llbracket \psi \rrbracket_x$$

$$\llbracket \neg \varphi \rrbracket_x = \neg \llbracket \varphi \rrbracket_x$$

$$\llbracket \Diamond \varphi \rrbracket_x = \exists y. E(x, y) \wedge \llbracket \varphi \rrbracket_y$$

We might make the following observations:

- ▶ Translated formulae only require two variables (with a bit of care).
- ▶ All quantification is of a special, guarded form $\exists y. E(x, y) \wedge \varphi(y)$.

Finding nice generalisations of the modal fragment

Inspecting the standard translation:

$$\llbracket p \rrbracket_x = P(x)$$

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket_x \wedge \llbracket \psi \rrbracket_x$$

$$\llbracket \neg \varphi \rrbracket_x = \neg \llbracket \varphi \rrbracket_x$$

$$\llbracket \Diamond \varphi \rrbracket_x = \exists y. E(x, y) \wedge \llbracket \varphi \rrbracket_y$$

We might make the following observations:

- ▶ Translated formulae only require two variables (with a bit of care).
- ▶ All quantification is of a special, guarded form $\exists y. E(x, y) \wedge \varphi(y)$.
- ▶ Quantification only leaves one variable free.

Finding nice generalisations of the modal fragment

Inspecting the standard translation:

$$\llbracket p \rrbracket_x = P(x)$$

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket_x \wedge \llbracket \psi \rrbracket_x$$

$$\llbracket \neg \varphi \rrbracket_x = \neg \llbracket \varphi \rrbracket_x$$

$$\llbracket \Diamond \varphi \rrbracket_x = \exists y. E(x, y) \wedge \llbracket \varphi \rrbracket_y$$

We might make the following observations:

- ▶ Translated formulae only require two variables (with a bit of care).
- ▶ All quantification is of a special, guarded form $\exists y. E(x, y) \wedge \varphi(y)$.
- ▶ Quantification only leaves one variable free.
- ▶ All negations are only applied to unary formulae.

Finding nice generalisations of the modal fragment

Inspecting the standard translation:

$$\llbracket p \rrbracket_x = P(x)$$

$$\llbracket \varphi \wedge \psi \rrbracket = \llbracket \varphi \rrbracket_x \wedge \llbracket \psi \rrbracket_x$$

$$\llbracket \neg \varphi \rrbracket_x = \neg \llbracket \varphi \rrbracket_x$$

$$\llbracket \Diamond \varphi \rrbracket_x = \exists y. E(x, y) \wedge \llbracket \varphi \rrbracket_y$$

We might make the following observations:

- ▶ Translated formulae only require two variables (with a bit of care).
- ▶ All quantification is of a special, guarded form $\exists y. E(x, y) \wedge \varphi(y)$.
- ▶ Quantification only leaves one variable free.
- ▶ All negations are only applied to unary formulae.
- ▶ Variables in atoms are only used in very restricted ways.

Guarded quantification

Guarded logic

The **atom guarded quantification fragment** only permits quantification of the form:

$$\exists \bar{y}. \alpha(\bar{x}\bar{y}) \wedge \varphi(\bar{z})$$

where \bar{z} is some subsets of the variables in $\bar{x}\bar{y}$, and α is some atom. For example:

$$\exists y. E(y, x) \wedge \varphi(y) \quad \text{backward modalities}$$

$$\exists y. y = y \wedge \varphi(y) \quad \text{global modalities}$$

Guarded quantification

Guarded logic

The **atom guarded quantification fragment** only permits quantification of the form:

$$\exists \bar{y}. \alpha(\bar{x}\bar{y}) \wedge \varphi(\bar{z})$$

where \bar{z} is some subsets of the variables in $\bar{x}\bar{y}$, and α is some atom. For example:

$$\exists y. E(y, x) \wedge \varphi(y) \quad \text{backward modalities}$$

$$\exists y. y = y \wedge \varphi(y) \quad \text{global modalities}$$

Categorical semantics

Abramsky and Marsden. “Comonadic semantics for guarded fragments”, 2021.

Guarded negation

Unary negation

The **unary negation fragment** restricts negation to unary formulae (Segoufin and Cate. “Unary negation”, 2013).

Guarded negation

Unary negation

The **unary negation fragment** restricts negation to unary formulae (Segoufin and Cate. “Unary negation”, 2013).

Guarded negation

An even more expressive fragment is the **(atom) guarded negation fragment**, which restricts negations to the form:

$$\alpha(\overline{xy}) \wedge \neg\varphi(\overline{y})$$

(Bárány, Cate, and Segoufin. “Guarded negation”, 2015).

Guarded negation

Unary negation

The **unary negation fragment** restricts negation to unary formulae (Segoufin and Cate. “Unary negation”, 2013).

Guarded negation

An even more expressive fragment is the **(atom) guarded negation fragment**, which restricts negations to the form:

$$\alpha(\overline{xy}) \wedge \neg\varphi(\overline{y})$$

(Bárány, Cate, and Segoufin. “Guarded negation”, 2015).

Categorical semantics

To be worked out! Challenges:

- ▶ More challenging multi-phase games.
- ▶ Existential positive fragment is unrestricted.

Variable count restrictions

Two-variable fragment

The **two-variable fragment** FO2 simply restricts the number of variables that can be used in formulae to two.

$$\varphi(x) \equiv \exists y. E(x, y) \wedge \exists x. E(y, x) \wedge \exists y. E(x, y) \wedge P(y)$$

Variable count restrictions

Two-variable fragment

The **two-variable fragment** FO2 simply restricts the number of variables that can be used in formulae to two.

$$\varphi(x) \equiv \exists y. E(x, y) \wedge \exists x. E(y, x) \wedge \exists y. E(x, y) \wedge P(y)$$

Categorical semantics

- ▶ Captured by the pebbling comonad from the original game comonad paper (Abramsky, Dawar, and Wang. “The pebbling comonad in Finite Model Theory”, 2017).
- ▶ Challenge - Conceptual proof FO2 has the finite model property.

Variable use order restrictions

Fluted, forward and ordered fragment

The **fluted, forward and ordered fragments** can only use certain ordered sequences of quantified variables, for example:

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_2, x_3)$ fluted (suffix)

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_1, x_2)$ ordered (prefix)

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge P(x_2)$ forward (subsequence)

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_1, x_1)$ non example

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_1, x_3)$ non example

(Bednarczyk and Jaakkola. “Towards a Model Theory of Ordered Logics: Expressivity and Interpolation”, 2022).

Variable use order restrictions

Adjacent Fragment

The **adjacent fragment** (Bednarczyk, Kojelis, and Pratt-Hartmann. “On the Limits of Decision: the Adjacent Fragment of First-Order Logic”, 2023). generalises the previous fragment, now allowing any adjacent sequence of variables in a relational atom. For example:

$\exists x_1. \forall x_2. \exists x_3. S(x_1, x_2, x_1, x_2, x_2, x_3)$ adjacent

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_2, x_3)$ adjacent

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_1, x_2)$ adjacent

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge P(x_2)$ adjacent

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_1, x_1)$ adjacent

$\exists x_1. \forall x_2. \exists x_3. R(x_1, x_2, x_3) \wedge E(x_1, x_3)$ still non example

Variable use order restrictions

Categorical semantics

To be worked out!

- ▶ Unlike other fragments considered so far.
- ▶ Can be mixed in with other features like guards to get better combined properties - see the reference for ordered logics.
- ▶ These fragments, particularly the recent adjacent fragment are at first sight rather puzzling - what's going on?

Quantification restriction - take two

One-dimensional fragment

The **one dimensional fragment** (Kieronski and Kuusisto.

“Uniform One-Dimensional Fragments with One Equivalence Relation”, 2015) only allows blocks of quantification of the form:

$$\psi(x) \equiv \exists \bar{x}. \varphi$$

leaving at most only one free variable.

Quantification restriction - take two

One-dimensional fragment

The **one dimensional fragment** (Kieronski and Kuusisto.

“Uniform One-Dimensional Fragments with One Equivalence Relation”, 2015) only allows blocks of quantification of the form:

$$\psi(x) \equiv \exists \bar{x}. \varphi$$

leaving at most only one free variable. In fact, the well-behaved fragment is the **uniform one-dimensional fragment** which imposes a uniformity condition on variables in Boolean combinations of relational atoms.

Categorical semantics

To be worked out!

- ▶ Unlike other fragments considered so far.
- ▶ Another unusual model comparison game structure.

Suggested Plan of Attack

- ▶ Start with the unary negation fragment - already non-trivial but avoids some of the difficulties of the guarded negation fragment. Potentially head towards GNFO if successful.

Suggested Plan of Attack

- ▶ Start with the unary negation fragment - already non-trivial but avoids some of the difficulties of the guarded negation fragment. Potentially head towards GNFO if successful.
- ▶ Consider the other fragment types, such ordered variable and one-dimensional fragments, and how to incorporate their game structures.

Suggested Plan of Attack

- ▶ Start with the unary negation fragment - already non-trivial but avoids some of the difficulties of the guarded negation fragment. Potentially head towards GNFO if successful.
- ▶ Consider the other fragment types, such ordered variable and one-dimensional fragments, and how to incorporate their game structures.
- ▶ Ideal outcome - A publishable categorical account of some or all of these fragments, including new categorical model theory developments, and clarification of the more traditional work.

Suggested Plan of Attack

- ▶ Start with the unary negation fragment - already non-trivial but avoids some of the difficulties of the guarded negation fragment. Potentially head towards GNFO if successful.
- ▶ Consider the other fragment types, such ordered variable and one-dimensional fragments, and how to incorporate their game structures.
- ▶ Ideal outcome - A publishable categorical account of some or all of these fragments, including new categorical model theory developments, and clarification of the more traditional work.
- ▶ Minimum outcome - We all learn a lot about practically relevant fragments of first-order logic, and the challenges involved in studying them from a structural point of view.

Bibliography I

- [1] Samson Abramsky, Anuj Dawar, and Pengming Wang. “The pebbling comonad in Finite Model Theory”. In: *32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017*. IEEE Computer Society, 2017, pp. 1–12.
- [2] Samson Abramsky and Dan Marsden. “Comonadic semantics for guarded fragments”. In: *36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021*. IEEE, 2021, pp. 1–13.
- [3] Vince Bárány, Balder ten Cate, and Luc Segoufin. “Guarded negation”. In: *Journal of the ACM (JACM)* 62.3 (2015), pp. 1–26.

Bibliography II

- [4] Bartosz Bednarczyk and Reijo Jaakkola. "Towards a Model Theory of Ordered Logics: Expressivity and Interpolation". In: *47th International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria*. Ed. by Stefan Szeider, Robert Ganian, and Alexandra Silva. Vol. 241. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 15:1–15:14.
- [5] Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann. "On the Limits of Decision: the Adjacent Fragment of First-Order Logic". In: *50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany*. Ed. by Kousha Etessami, Uriel Feige, and Gabriele Puppis. Vol. 261. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 111:1–111:21.

Bibliography III

- [6] Emanuel Kieronski and Antti Kuusisto. “Uniform One-Dimensional Fragments with One Equivalence Relation”. In: *24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany*. Ed. by Stephan Kreutzer. Vol. 41. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 597–615. DOI: 10.4230/LIPIcs.CSL.2015.597. URL: <https://doi.org/10.4230/LIPIcs.CSL.2015.597>.
- [7] Luc Segoufin and Balder ten Cate. “Unary negation”. In: *Logical Methods in Computer Science (LMCS) 9* (2013).

Bibliography IV

[8] Moshe Y. Vardi. “Why is Modal Logic So Robustly Decidable?” In: *Descriptive Complexity and Finite Models, Proceedings of a DIMACS Workshop 1996, Princeton, New Jersey, USA, January 14-17, 1996*. Ed. by Neil Immerman and Phokion G. Kolaitis. Vol. 31. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. DIMACS/AMS, 1996, pp. 149–183.