String Diagrams for Elementary Category Theory
4: Putting it all together

Dan Marsden

Based on joint work with Ralf Hinze

April 5, 2023

Free monads

Free algebras

Definition (Free algebra functor)
In Lecture 2 we introduced the category of algebras for an

endofunctor X, which equips a given category € with additional
structure. There is a forgetful functor, the underlying functor,

U* (A,a):=A
U*: I-Alg(C e ’ ’
g(C€) — U (h) = b,

Free monads

Free algebras

Definition (Free algebra functor)

In Lecture 2 we introduced the category of algebras for an
endofunctor X, which equips a given category € with additional
structure. There is a forgetful functor, the underlying functor,

U* (4, a):= A4,
UZ (h) := h,

If it exists, the left adjoint to the forgetful functor sends an object
to the free algebra:

UL : S-Alg(€) — €

Free® Free> A=: (Z* A,in A)
TAlgC) T L ¢ . .
Ut Free™ f=:2*f

Free monads

Free algebra intuitions and terminology

We can think of the endofunctor X a signature of operations. For
example if £ (X) =X x X + 1, then a X-algebraon 4 is a
function of the form:

AxA+1—-A

Free monads

Free algebra intuitions and terminology

We can think of the endofunctor £ a signature of operations. For
example if £ (X) = X x X 4 1, then a Z-algebraon A is a
function of the form:

AxA+1—A
Which is equivalent to two functions:

AxA—A and 1— A

Free monads

Free algebra intuitions and terminology

We can think of the endofunctor X a signature of operations. For
example if £ (X) =X x X + 1, then a X-algebraon 4 is a
function of the form:

AxA+1—-A
Which is equivalent to two functions:

AxA—-A and 1= A

As a function of type 1 — A encodes an element of A, this is
equivalent to choosing a binary function A x A — A, which we
shall denote + an an element of A, which we shall denote 0.

Free monads

Free algebra intuitions and terminology

Example
For our example L, the following are algebras:

P The natural numbers, with + interpreted by addition, and 0
by zero.

P The natural numbers, with + interpreted by multiplication,
and 0 by 33.

P The set of all strings of natural numbers, with +
concatenation, and 0 the empty string.

P The set of all strings of natural numbers, with +
concatenation, and 0 the string [33].

Free monads

Free algebra intuitions and terminology

For our example X, the forgetful functor does have a left adjoint.
3* A consists of all terms of the form:

0,a,(04+a)+0,a+ a,...
The free algebra structure map
inA:ZX*A—->X*A

picks out as constant element the term 0, and the binary operation
is formal addition:
(s,) s+t

Free monads

Free algebra intuitions and terminology

Further structure:

P The unit of the adjunction, var 4 : A — £* A, turns an
element of A into the term for the corresponding variable.

P The counit € (4, a) : Free™ A — (4, a) evaluates a term using
the operations of a given algebra.

This intuitive pattern repeats for different choices of Z.

Free monads
Folds

We introduce shorthand for the evaluation map:
UZ (e (4, a)).

This is an arrow in the underlying category, which we shall denote
(a), and pronounce “fold a:

a:2A— A
(a): Z*A— A

Free monads
Folds

For an algebra:
I A

A/J/a

we can depict (a) as follows:

UZ Free™ uz(4,a)

- o -

Free monads
The free / forgetful adjunction

The universal property of the free / forgetful adjunction can be
unpacked in terms of the base category as

A xx A A A
_ b s var _
h g h g ’
B B B B

for all Z-homomorphisms h : Free* A — (B, b) and all arrows
qg: A — B.

Free monads
The free / forgetful adjunction

We have the following two computation rules:

A A
var
- =
A A
> >* A X Y* A
in
a

Free monads
The free / forgetful adjunction

Naturality of the counit gives rise to the elevation rule:

T A r A A > A
h b h b
— — a —
@ h h
B B B B

Free monads

Algebras of endofunctors and monads

If we apply Huber’s construction to the adjunction Free™ 4 UX, we
obtain the so-called free monad of a functor: (X*, var,sub)
where sub = (in)).

Free monads

Algebras of endofunctors and monads

Substitution plays nicely with evaluation. Combining the second
computational rule with elevation gives:

> X* A > X* A
sub

A A

Combining this observation with the first computation rule, it tells
us that for every Z-algebra (4, a), (X* 4,(a)) is an
Eilenberg—Moore algebra. That this mapping preserves
homomorphisms follows from the elevation rule.

Free monads

Algebras of endofunctors and monads

» Fold yields a functor Up : £-Alg(C) — C*'.

Free monads

Algebras of endofunctors and monads

» Fold yields a functor Up : £-Alg(C) — C*'.

P> It turns out that every Z* Eilenberg—Moore algebra arises this
way.

Free monads

Algebras of endofunctors and monads

» Fold yields a functor Up : £-Alg(C) — C*'.

P> It turns out that every Z* Eilenberg—Moore algebra arises this
way.

P Categorically, the category of Z-algebras is isomorphic to the
Eilenberg—Moore category of the free monad Z*:

Up: Z-Alg(€C) = C* : Dn

To see this, we first define Dn : € — Z-Alg(C).

Free monads

Algebras of endofunctors and monads

We can map Eilenberg—Moore to X-algebras algebras exploiting the
computation rules, reversing Up in the process:

—~
) —
=] Q2
b A = b A 32 I A
o .
var £ var s
in S g
5 O
c + a
o) (%3]
a a =
3 a =
) —
A -— A A

Free monads

Algebras of endofunctors and monads

So precomposing with the following map takes Eilenberg—Moore to
3 -algebras:
> >

var

emb = in

Free monads

Algebras of endofunctors and monads

That precomposing with emb preserves homomorphisms is
straightforward:

D
3
lon
I { EM-alg. morphism }
D
3
lon
S

Free monads

Algebras of endofunctors and monads

We have two identity on morphisms functors:

Up(4,a: 24— A) = (4,(a)) Uph = h,
Dn(B,b:Z*B—>B):(B,b‘embB) Dnh = h.

DnoUp = Id by design. It remains to show UpoDn = Id. We need
to prove that (b - emb B)) = b.

Free monads

Algebras of endofunctors and monads

We would like to use the free algebra universal property. To do so,
we must show that Eilenberg—Moore algebra b: Z* B — Bis a
Z-homomorphism (X* B,in B) — (B, b - emb B):

-~ ’_: .

x> X* T X =2 X o X >
I |emb| @ =
in S sub § emb E

B g a © embl B

o c

- = b b

b ~ 5 = 5
B - % = B85

Free monads

Algebras of endofunctors and monads

Therefore we can then appeal to the universal property:

>* B X B B B
/Vb - /L/ = va/r‘/ - / '
b-embB b
B B B B

Applying the first computation rule completes the proof of the
isomorphism
Up: Z-Alg(C) = C*" : Dn.

The resumption monad
The challenge

The challenge

P Let M: C — € be amonad and F : @ — € be an endofunctor;
we aim to show that Mo(FoM)* is a monad.

The resumption monad
The challenge

The challenge
P Let M: C — € be amonad and F : @ — € be an endofunctor;
we aim to show that Mo(FoM)* is a monad.

P In fact, we shall generalise, and show that given a right
monad action o : ZoM = X, MoX* is a monad.

The resumption monad
The challenge

The challenge
P Let M: C — € be amonad and F : @ — € be an endofunctor;
we aim to show that Mo(FoM)* is a monad.

P In fact, we shall generalise, and show that given a right
monad action o : ZoM = X, MoX* is a monad.

P We recover the original result with £ = FoM and the monad

action:
FM M

FM

The resumption monad
The plan

We have the following structure available to us:

Free
T-Alg@) T L ¢ 3

The resumption monad
The plan

We have the following structure available to us:

Free
T-Alg@) T L ¢ 3

P This looks close to the Huber situation, but M lives at the
“wrong end”.

The resumption monad
The plan

We have the following structure available to us:

Free
-Algle) 1~ ¢C 3

P This looks close to the Huber situation, but M lives at the
“wrong end”.

P If we have a monad M : £-Alg(C) — Z-Alg(C), we could

apply Huber's construction, giving a monad UZ oMoFree”™.

The resumption monad
The plan

We have the following structure available to us:

Free
-Algle) 1~ ¢C 3

P This looks close to the Huber situation, but M lives at the
“wrong end”.

P If we have a monad M : £-Alg(C) — Z-Alg(C), we could

apply Huber's construction, giving a monad UZ oMoFree”™.

P If additionally, U*oM = MoU%, then we have:

UZoMoFree™ = MoUZoFree™ = MoL*.

The resumption monad
How to build a suitable M

A natural transformation 8 : £oM =3 MoX induces a functor M
with action:

With:

UZoM (4, a) = UT (M (4),M(a) - §4) = M (4) = MoUZ (4, a).

The resumption monad
How to build a suitable M

This operation preserves homomorphisms as:

—
IMA S M4
d £ 0
N h
n Y < b
M B ~ MB

Preservation of identities and composition is then immediate as M
does.

The resumption monad
Building a suitable §

Given a right monad action o : ZoM - X, we can build a suitable
d as the composite:

> M M
M X

M X

The resumption monad

Lifted unit and multiplication

To show that each component of 7y : Id - M,
n(4,a): (A,a) > (MA,Ma -3 A),

is a homomorphism, we simply apply the unit action law:

Il { o respectsm }

The resumption monad

Lifted unit and multiplication

Likewise, to establish that each component of v : MoM =5 M,
p(4,a): M(MA),M(Ma) - MBA)-d3(MA)) - (MA,Ma -3 A),

is a homomorphism, we reason

X M M > M M M M

| { m monad unit }
b
Il { o respects p }

The resumption monad

Invoking Huber’s construction

By construction, M and fx satisfy the following equations:

U U UM M M MU

M U

U U

z‘—ojl

The resumption monad

Invoking Huber’s construction

By adding explicit identity natural transformations, we get a more
statisfactory rendition:

’ : ’ \
id U n 1 U
M M
M M M M
] b _ U id
id
id U U
"

The resumption monad

Invoking Huber’s construction

We are now in a position to put the unit of the composite monad
in concrete terms:

—~—
-~ s —
il 2 Ul = Ul T
e+ + >
N\ o B S s Tvar
il g M 2 o [[
> + (]
+ = n o
~ | id s] =
UMF = MUF MUF = ML

The resumption monad

Invoking Huber’s construction

{ type cast }

M U Fr

UM Fr UM Fr

Il { redraw }

Il { mult. identities }

M U Fr

The resumption monad
Explicit description

The counit can be described in terms of a fold for the following
algebra:

M F

M x*

The resumption monad
Explicit description

M X MZX

T T v

Further directions

Further elementary category theory with nice graphical
perspectives, e.g.

P Universals and the Yoneda Lemma.
P Lots about distributive laws.

P Kan extensions and codensity monads.

Further directions

Other settings e.g.

P Monoidal categories, braided monoidal categories, symmetric
monoidal categories...

P Double categories.

P Higher categories, and combinations of structures such as
monoidal 2-categories.

Further directions

Applications e.g.
P Quantum theory / computation.
P Control theory.
P Linear algebra.
P Natural language semantics.

P Analog and digital electronics.

Further directions

Theory:
» PROs, PROPs, ...
P Coherence theorems.

P> Expressivity, soundness and completeness results.

Further directions

Tools:
P Proof assistants.
P Diagramming tools.

P Diagramming libraries.

