

String Diagrams for Elementary Category Theory

4: Putting it all together

Dan Marsden
Based on joint work with Ralf Hinze

April 5, 2023

Free monads

Free algebras

Definition (Free algebra functor)

In Lecture 2 we introduced the category of algebras for an endofunctor Σ , which equips a given category \mathcal{C} with additional structure. There is a forgetful functor, the **underlying functor**,

$$\mathbf{U}^\Sigma : \Sigma\text{-}\mathbf{Alg}(\mathcal{C}) \rightarrow \mathcal{C} \quad \begin{aligned} \mathbf{U}^\Sigma(A, a) &:= A, \\ \mathbf{U}^\Sigma(h) &:= h, \end{aligned}$$

Free monads

Free algebras

Definition (Free algebra functor)

In Lecture 2 we introduced the category of algebras for an endofunctor Σ , which equips a given category \mathcal{C} with additional structure. There is a forgetful functor, the **underlying functor**,

$$U^\Sigma : \Sigma\text{-}\mathbf{Alg}(\mathcal{C}) \rightarrow \mathcal{C} \quad \begin{aligned} U^\Sigma(A, a) &:= A, \\ U^\Sigma(h) &:= h, \end{aligned}$$

If it exists, the left adjoint to the forgetful functor sends an object to the **free algebra**:

$$\Sigma\text{-}\mathbf{Alg}(\mathcal{C}) \begin{array}{c} \xleftarrow{\text{Free}^\Sigma} \\ \perp \\ \xrightarrow{U^\Sigma} \end{array} \mathcal{C} \quad \begin{aligned} \text{Free}^\Sigma A &=: (\Sigma^* A, \text{in } A) \\ \text{Free}^\Sigma f &=: \Sigma^* f \end{aligned}.$$

Free monads

Free algebra intuitions and terminology

We can think of the endofunctor Σ a signature of operations. For example if $\Sigma(X) = X \times X + 1$, then a Σ -algebra on A is a function of the form:

$$A \times A + 1 \rightarrow A$$

Free monads

Free algebra intuitions and terminology

We can think of the endofunctor Σ a signature of operations. For example if $\Sigma(X) = X \times X + 1$, then a Σ -algebra on A is a function of the form:

$$A \times A + 1 \rightarrow A$$

Which is equivalent to two functions:

$$A \times A \rightarrow A \quad \text{and} \quad 1 \rightarrow A$$

Free monads

Free algebra intuitions and terminology

We can think of the endofunctor Σ a signature of operations. For example if $\Sigma(X) = X \times X + 1$, then a Σ -algebra on A is a function of the form:

$$A \times A + 1 \rightarrow A$$

Which is equivalent to two functions:

$$A \times A \rightarrow A \quad \text{and} \quad 1 \rightarrow A$$

As a function of type $1 \rightarrow A$ encodes an element of A , this is equivalent to choosing a binary function $A \times A \rightarrow A$, which we shall denote $+$ an an element of A , which we shall denote 0 .

Free monads

Free algebra intuitions and terminology

Example

For our example Σ , the following are algebras:

- ▶ The natural numbers, with $+$ interpreted by addition, and 0 by zero.
- ▶ The natural numbers, with $+$ interpreted by *multiplication*, and 0 by 33.
- ▶ The set of all strings of natural numbers, with $+$ concatenation, and 0 the empty string.
- ▶ The set of all strings of natural numbers, with $+$ concatenation, and 0 the string [33].

Free monads

Free algebra intuitions and terminology

For our example Σ , the forgetful functor does have a left adjoint.
 $\Sigma^* A$ consists of all terms of the form:

$$0, a, (0 + a) + 0, a + a, \dots$$

The free algebra structure map

$$\text{in } A : \Sigma \Sigma^* A \rightarrow \Sigma^* A$$

picks out as constant element the term 0, and the binary operation is formal addition:

$$(s, t) \mapsto s + t$$

Free monads

Free algebra intuitions and terminology

Further structure:

- ▶ The unit of the adjunction, $\text{var } A : A \rightarrow \Sigma^* A$, turns an element of A into the term for the corresponding variable.
- ▶ The counit $\epsilon(A, a) : \text{Free}^\Sigma A \rightarrow (A, a)$ evaluates a term using the operations of a given algebra.

This intuitive pattern repeats for different choices of Σ .

Free monads

Folds

We introduce shorthand for the evaluation map:

$$U^\Sigma(\epsilon(A, a)).$$

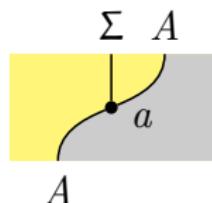
This is an arrow in the underlying category, which we shall denote $\langle\langle a \rangle\rangle$, and pronounce “**fold** a :

$$\frac{a : \Sigma A \rightarrow A}{\langle\langle a \rangle\rangle : \Sigma^* A \rightarrow A}.$$

Free monads

Folds

For an algebra:



we can depict $(\langle a \rangle)$ as follows:

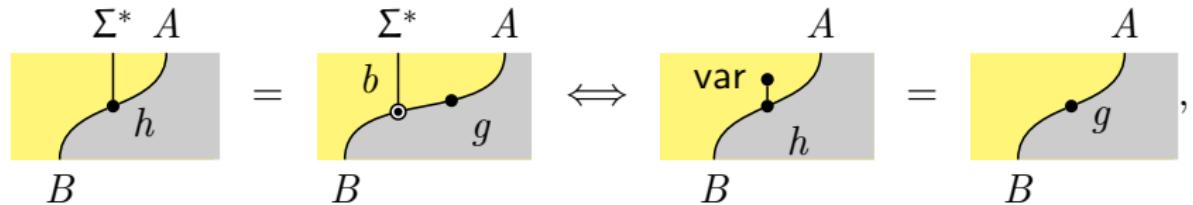
$$\Sigma^* A \quad := \quad \begin{matrix} \text{U}^\Sigma \text{Free}^\Sigma \\ \text{U}^\Sigma \quad (A, a) \end{matrix} \quad =: \quad \Sigma^* A$$

The diagram shows three parts separated by colons. The first part is a yellow square with a grey bottom-right corner, a curved line from the bottom-left to a point labeled 'a', and the label $\Sigma^* A$ above it. The second part is a yellow square with an orange bottom-right corner, a curved line from the bottom-left to a point labeled ϵ , and the label $\text{U}^\Sigma \text{Free}^\Sigma$ above it, with U^Σ and (A, a) below it. The third part is a yellow square with a grey bottom-right corner, a curved line from the bottom-left to a point labeled 'a', and the label $\Sigma^* A$ above it.

Free monads

The free / forgetful adjunction

The universal property of the free / forgetful adjunction can be unpacked in terms of the base category as

$$\Sigma^* A \quad = \quad \Sigma^* A \quad \Leftrightarrow \quad \Sigma^* A \quad = \quad A,$$


for all Σ -homomorphisms $h : \text{Free}^\Sigma A \rightarrow (B, b)$ and all arrows $g : A \rightarrow B$.

Free monads

The free / forgetful adjunction

We have the following two **computation rules**:

$$\begin{array}{ccc} \text{var} & & A \\ \bullet \text{---} \circ & & \\ A & = & A \\ & & , \end{array}$$

$$\begin{array}{ccc} \Sigma & \Sigma^* & A \\ \text{in} & & \\ \bullet \text{---} \circ & & \\ A & = & A \\ & & a \end{array}.$$

Free monads

The free / forgetful adjunction

Naturality of the counit gives rise to the *elevation rule*:

$$\begin{array}{ccccc} \Sigma & A & = & \Sigma & A \\ \begin{array}{c} h \\ \text{---} \\ a \end{array} & & = & \begin{array}{c} b \\ \text{---} \\ h \end{array} & \Rightarrow \\ B & & & B & \\ & & & & \begin{array}{c} \Sigma^* & A \\ \text{---} \\ h & a \end{array} \\ & & & & = \\ & & & & \begin{array}{c} \Sigma^* & A \\ \text{---} \\ b & h \end{array} \\ B & & & & B \end{array}$$

Free monads

Algebras of endofunctors and monads

If we apply Huber's construction to the adjunction $\text{Free}^\Sigma \dashv U^\Sigma$, we obtain the so-called **free monad of a functor**: $(\Sigma^*, \text{var}, \text{sub})$ where $\text{sub} = (\text{in})$.

Free monads

Algebras of endofunctors and monads

Substitution plays nicely with evaluation. Combining the second computational rule with elevation gives:

$$\begin{array}{ccc} \Sigma^* & \Sigma^* A \\ \text{sub} & & \\ \text{---} & & \text{---} \\ \text{---} & & \text{---} \\ A & & A \end{array} = \begin{array}{ccc} \Sigma^* & \Sigma^* A \\ & & \\ a & & a \\ \text{---} & & \text{---} \\ \text{---} & & \text{---} \\ A & & A \end{array},$$

Combining this observation with the first computation rule, it tells us that for every Σ -algebra (A, a) , $(\Sigma^* A, \langle a \rangle)$ is an Eilenberg–Moore algebra. That this mapping preserves homomorphisms follows from the elevation rule.

Free monads

Algebras of endofunctors and monads

- ▶ Fold yields a functor $\text{Up} : \Sigma\text{-Alg}(\mathcal{C}) \rightarrow \mathcal{C}^{\Sigma^*}$.

Free monads

Algebras of endofunctors and monads

- ▶ Fold yields a functor $\text{Up} : \Sigma\text{-Alg}(\mathcal{C}) \rightarrow \mathcal{C}^{\Sigma^*}$.
- ▶ It turns out that every Σ^* Eilenberg–Moore algebra arises this way.

Free monads

Algebras of endofunctors and monads

- ▶ Fold yields a functor $\mathbf{Up} : \Sigma\text{-}\mathbf{Alg}(\mathcal{C}) \rightarrow \mathcal{C}^{\Sigma^*}$.
- ▶ It turns out that every Σ^* Eilenberg–Moore algebra arises this way.
- ▶ Categorically, the category of Σ -algebras is isomorphic to the Eilenberg–Moore category of the free monad Σ^* :

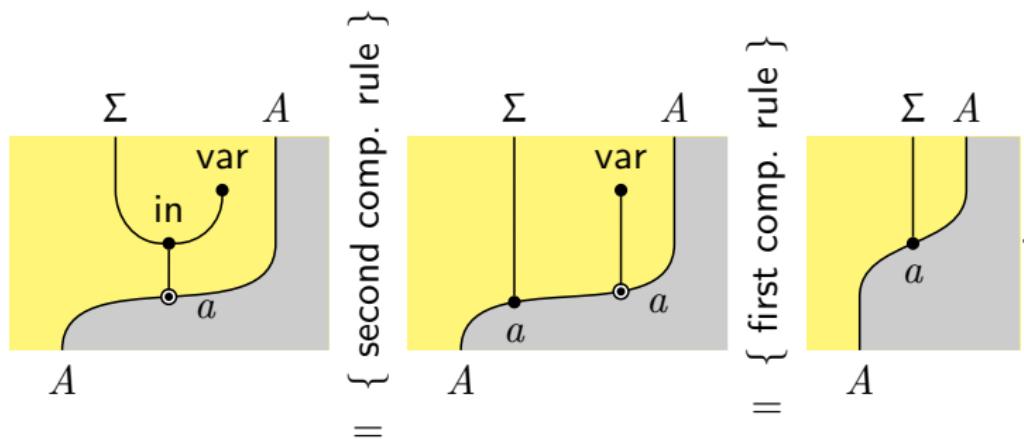
$$\mathbf{Up} : \Sigma\text{-}\mathbf{Alg}(\mathcal{C}) \cong \mathcal{C}^{\Sigma^*} : \mathbf{Dn}$$

To see this, we first define $\mathbf{Dn} : \mathcal{C}^{\Sigma^*} \rightarrow \Sigma\text{-}\mathbf{Alg}(\mathcal{C})$.

Free monads

Algebras of endofunctors and monads

We can map Eilenberg–Moore to Σ -algebras algebras exploiting the computation rules, reversing Up in the process:



Free monads

Algebras of endofunctors and monads

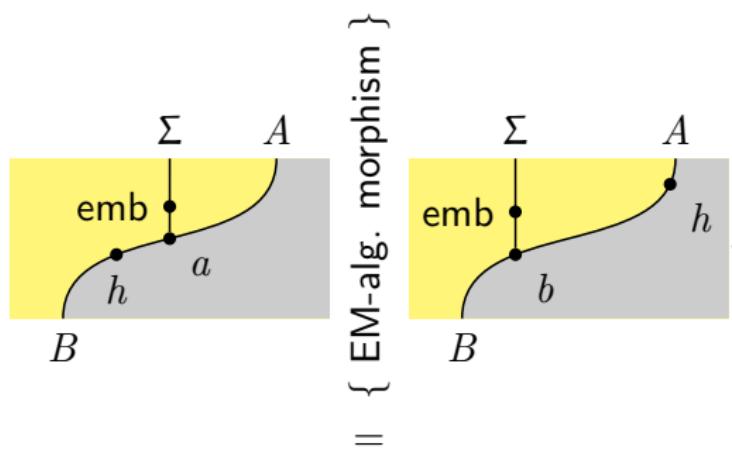
So precomposing with the following map takes Eilenberg–Moore to Σ -algebras:

$$\Sigma \text{ } \underset{\Sigma^*}{\underset{\text{emb}}{\underset{|}{\underset{\Sigma^*}{\text{ }}}}} := \Sigma \text{ } \underset{\Sigma^*}{\underset{\text{in}}{\underset{\text{var}}{\underset{|}{\underset{\Sigma^*}{\text{ }}}}}} .$$

Free monads

Algebras of endofunctors and monads

That precomposing with emb preserves homomorphisms is straightforward:



Free monads

Algebras of endofunctors and monads

We have two identity on morphisms functors:

$$\text{Up}(A, a : \Sigma A \rightarrow A) = (A, \langle\langle a \rangle\rangle)$$

$$\text{Up } h = h,$$

$$\text{Dn}(B, b : \Sigma^* B \rightarrow B) = (B, b \cdot \text{emb } B)$$

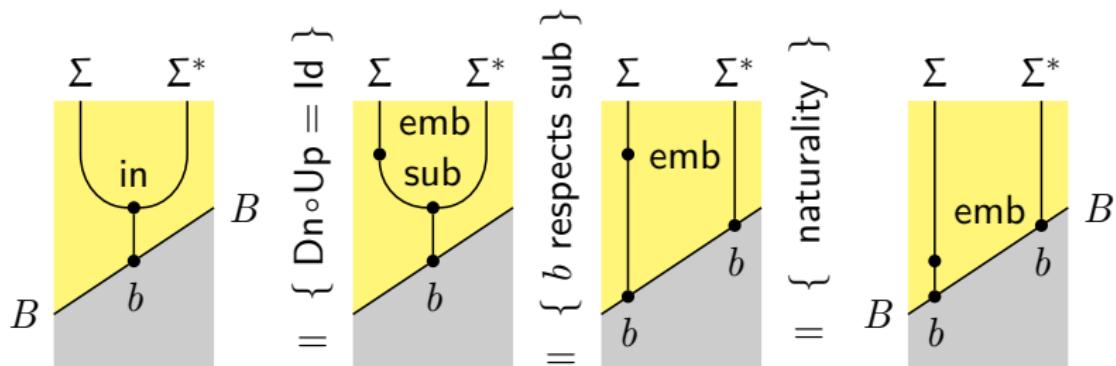
$$\text{Dn } h = h.$$

$\text{Dn} \circ \text{Up} = \text{Id}$ by design. It remains to show $\text{Up} \circ \text{Dn} = \text{Id}$. We need to prove that $\langle\langle b \cdot \text{emb } B \rangle\rangle = b$.

Free monads

Algebras of endofunctors and monads

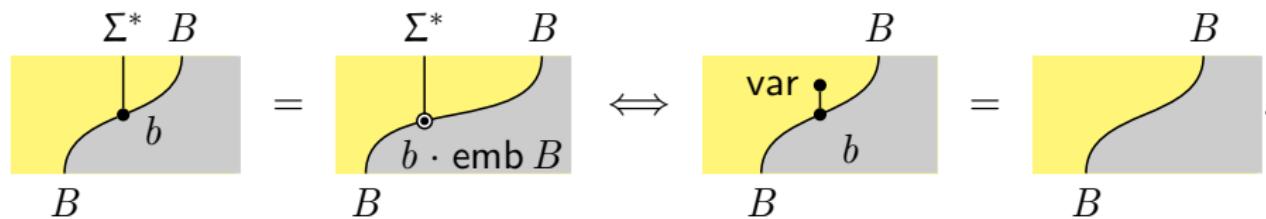
We would like to use the free algebra universal property. To do so, we must show that Eilenberg–Moore algebra $b : \Sigma^* B \rightarrow B$ is a Σ -homomorphism $(\Sigma^* B, \text{in } B) \rightarrow (B, b \cdot \text{emb } B)$:



Free monads

Algebras of endofunctors and monads

Therefore we can then appeal to the universal property:

$$\Sigma^* B = \Sigma^* B \Leftrightarrow \Sigma^* B = B$$


Applying the first computation rule completes the proof of the isomorphism

$$\text{Up} : \Sigma\text{-Alg}(\mathcal{C}) \cong \mathcal{C}^{\Sigma^*} : \text{Dn}.$$

The resumption monad

The challenge

The challenge

- ▶ Let $M : \mathcal{C} \rightarrow \mathcal{C}$ be a monad and $F : \mathcal{C} \rightarrow \mathcal{C}$ be an endofunctor; we aim to show that $M \circ (F \circ M)^*$ is a monad.

The resumption monad

The challenge

The challenge

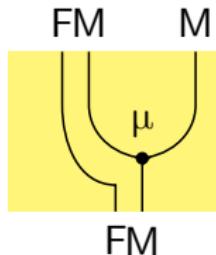
- ▶ Let $M : \mathcal{C} \rightarrow \mathcal{C}$ be a monad and $F : \mathcal{C} \rightarrow \mathcal{C}$ be an endofunctor; we aim to show that $M \circ (F \circ M)^*$ is a monad.
- ▶ In fact, we shall generalise, and show that given a right monad action $\alpha : \Sigma \circ M \xrightarrow{\cdot} \Sigma$, $M \circ \Sigma^*$ is a monad.

The resumption monad

The challenge

The challenge

- ▶ Let $M : \mathcal{C} \rightarrow \mathcal{C}$ be a monad and $F : \mathcal{C} \rightarrow \mathcal{C}$ be an endofunctor; we aim to show that $M \circ (F \circ M)^*$ is a monad.
- ▶ In fact, we shall generalise, and show that given a right monad action $\alpha : \Sigma \circ M \rightarrow \Sigma$, $M \circ \Sigma^*$ is a monad.
- ▶ We recover the original result with $\Sigma = F \circ M$ and the monad action:



The resumption monad

The plan

We have the following structure available to us:

$$\Sigma\text{-}\mathbf{Alg}(\mathcal{C}) \begin{array}{c} \xleftarrow{\text{Free}^\Sigma} \\ \perp \\ \xrightarrow{U^\Sigma} \end{array} \mathcal{C} \xrightarrow{\quad} \mathcal{C}^M.$$

The resumption monad

The plan

We have the following structure available to us:

$$\Sigma\text{-Alg}(\mathcal{C}) \begin{array}{c} \xleftarrow{\text{Free}^\Sigma} \\ \perp \\ \xrightarrow{U^\Sigma} \end{array} \mathcal{C} \xrightarrow{M} \mathcal{C}.$$

- ▶ This looks close to the Huber situation, but M lives at the “wrong end”.

The resumption monad

The plan

We have the following structure available to us:

$$\Sigma\text{-Alg}(\mathcal{C}) \begin{array}{c} \xleftarrow{\text{Free}^\Sigma} \\ \perp \\ \xrightarrow{U^\Sigma} \end{array} \mathcal{C} \xrightarrow{M} \mathcal{C}.$$

- ▶ This looks close to the Huber situation, but M lives at the “wrong end”.
- ▶ If we have a monad $\overline{M} : \Sigma\text{-Alg}(\mathcal{C}) \rightarrow \Sigma\text{-Alg}(\mathcal{C})$, we could apply Huber’s construction, giving a monad $U^\Sigma \circ \overline{M} \circ \text{Free}^\Sigma$.

The resumption monad

The plan

We have the following structure available to us:

$$\Sigma\text{-Alg}(\mathcal{C}) \begin{array}{c} \xleftarrow{\text{Free}^\Sigma} \\ \perp \\ \xrightarrow{U^\Sigma} \end{array} \mathcal{C} \xrightarrow{M} \mathcal{C}.$$

- ▶ This looks close to the Huber situation, but M lives at the “wrong end”.
- ▶ If we have a monad $\overline{M} : \Sigma\text{-Alg}(\mathcal{C}) \rightarrow \Sigma\text{-Alg}(\mathcal{C})$, we could apply Huber’s construction, giving a monad $U^\Sigma \circ \overline{M} \circ \text{Free}^\Sigma$.
- ▶ If additionally, $U^\Sigma \circ \overline{M} = M \circ U^\Sigma$, then we have:

$$U^\Sigma \circ \overline{M} \circ \text{Free}^\Sigma = M \circ U^\Sigma \circ \text{Free}^\Sigma = M \circ \Sigma^*.$$

The resumption monad

How to build a suitable \overline{M}

A natural transformation $\delta : \Sigma \circ M \rightarrow M \circ \Sigma$ induces a functor \overline{M} with action:

$$\begin{array}{ccc} \Sigma \ A & & \Sigma \ M \ A \\ \text{yellow} & \leftrightarrow & \text{yellow} \\ \text{grey} & & \text{grey} \\ \text{---} & & \text{---} \\ a & & \delta \\ \text{---} & & \text{---} \\ A & & M \ A \end{array}$$

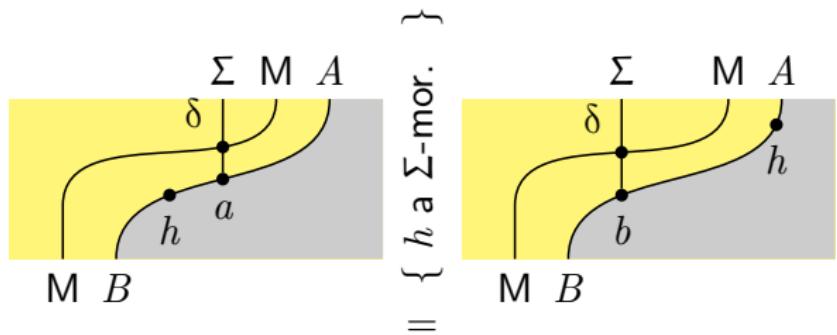
With:

$$U^\Sigma \circ \overline{M} (A, a) = U^\Sigma (M(A), M(a) \cdot \delta_A) = M(A) = M \circ U^\Sigma (A, a).$$

The resumption monad

How to build a suitable \overline{M}

This operation preserves homomorphisms as:



Preservation of identities and composition is then immediate as M does.

The resumption monad

Building a suitable δ

Given a right monad action $\alpha : \Sigma \circ M \xrightarrow{\cdot} \Sigma$, we can build a suitable δ as the composite:

$$\begin{array}{ccc} \Sigma & M \\ \delta \\ M & \Sigma \end{array} := \begin{array}{ccc} \Sigma & M \\ \eta & \alpha \\ M & \Sigma \end{array}$$

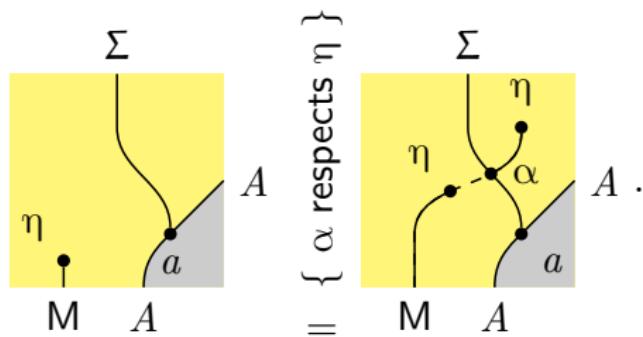
The resumption monad

Lifted unit and multiplication

To show that each component of $\bar{\eta} : \text{Id} \xrightarrow{\sim} \overline{M}$,

$$\bar{\eta}(A, a) : (A, a) \rightarrow (\mathsf{M} A, \mathsf{M} a \cdot \delta A),$$

is a homomorphism, we simply apply the unit action law:



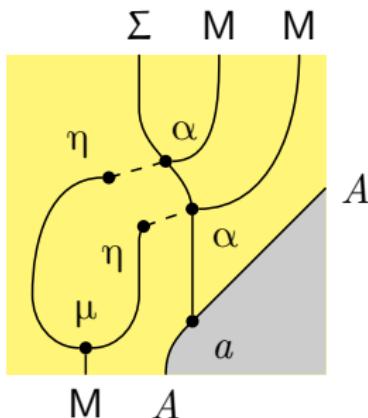
The resumption monad

Lifted unit and multiplication

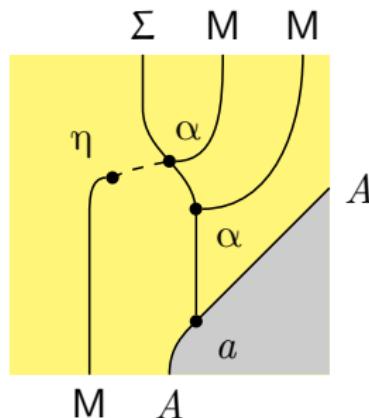
Likewise, to establish that each component of $\bar{\mu} : \overline{M} \circ \overline{M} \rightarrow \overline{M}$,

$$\bar{\mu}(A, a) : (\mathbf{M}(\mathbf{M} A), \mathbf{M}(\mathbf{M} a) \cdot \mathbf{M}(\delta A) \cdot \delta(\mathbf{M} A)) \rightarrow (\mathbf{M} A, \mathbf{M} a \cdot \delta A),$$

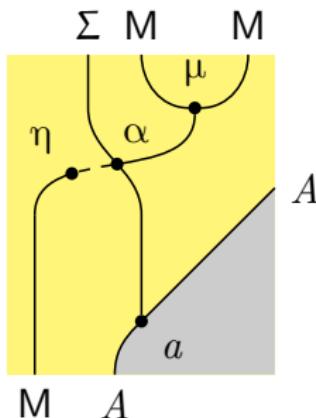
is a homomorphism, we reason



|| { η monad unit }



$$= \{ \alpha \text{ respects } \mu \}$$



The resumption monad

Invoking Huber's construction

By construction, $\bar{\eta}$ and $\bar{\mu}$ satisfy the following equations:

$$\begin{array}{c} \text{U} \\ \text{---} \\ \bar{\eta} \\ \text{---} \\ \text{U} \quad \overline{\text{M}} \end{array} = \begin{array}{c} \text{U} \\ \text{---} \\ \eta \\ \text{---} \\ \text{M} \quad \text{U} \end{array} \quad \begin{array}{c} \text{U} \quad \overline{\text{M}} \quad \overline{\text{M}} \\ \text{---} \\ \text{U} \quad \overline{\text{M}} \end{array} = \begin{array}{c} \text{M} \quad \text{M} \quad \text{U} \\ \text{---} \\ \mu \\ \text{---} \\ \text{M} \quad \text{U} \end{array}.$$

The resumption monad

Invoking Huber's construction

By adding explicit identity natural transformations, we get a more satisfactory rendition:

$$\begin{array}{ccc} \text{U} & & \text{U} \\ \text{---} & \text{---} & \text{---} \\ \text{M} & & \text{M} \end{array} \quad = \quad \begin{array}{ccc} \text{U} & & \text{U} \\ \text{---} & \text{---} & \text{---} \\ \text{M} & & \text{M} \end{array}$$

Diagram illustrating the identity natural transformation η . The left square has a yellow bottom-left triangle and an orange top-right triangle. The right square has an orange bottom-left triangle and a yellow top-right triangle. The labels id and $\bar{\eta}$ are present in the first diagram, and η is present in the second diagram.

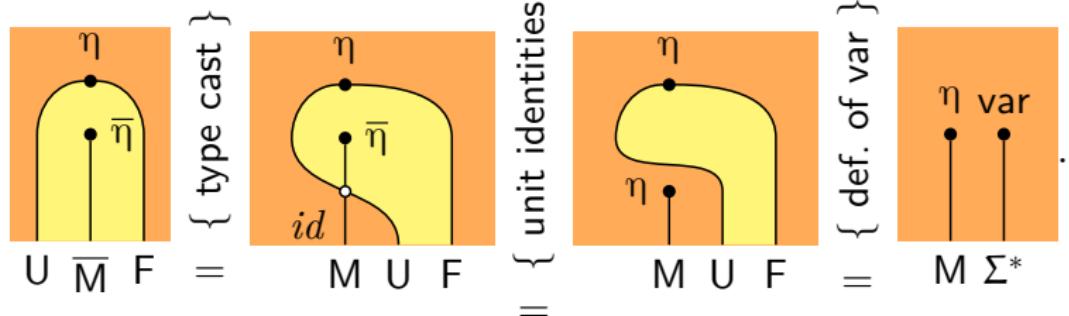
$$\begin{array}{ccc} \overline{\text{M}} & \overline{\text{M}} & \text{U} \\ \text{---} & \text{---} & \text{---} \\ \text{M} & & \text{M} \end{array} \quad = \quad \begin{array}{ccc} \overline{\text{M}} & \overline{\text{M}} & \text{U} \\ \text{---} & \text{---} & \text{---} \\ \text{M} & & \text{M} \end{array}.$$

Diagram illustrating the identity natural transformation μ . The left square has an orange top-left triangle and a yellow bottom-right triangle. The right square has a yellow top-left triangle and an orange bottom-right triangle. The labels id and $\bar{\mu}$ are present in the first diagram, and μ is present in the second diagram.

The resumption monad

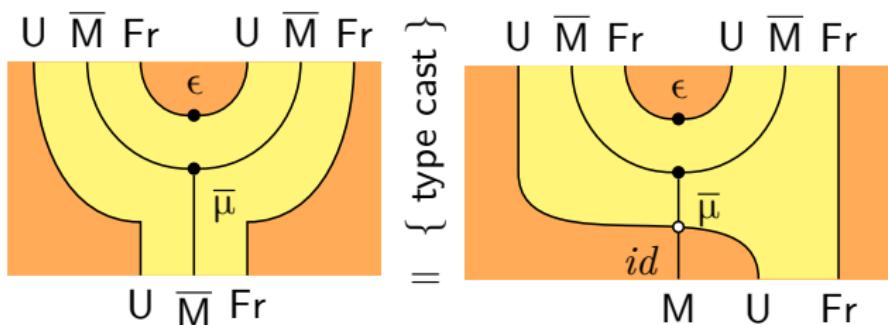
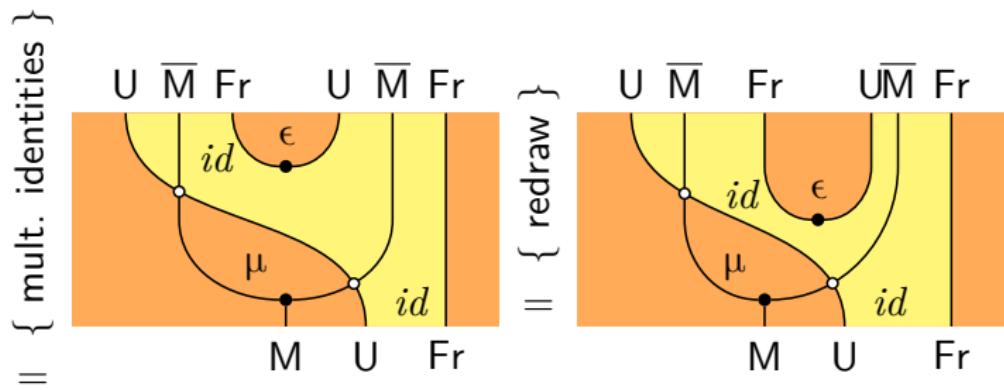
Invoking Huber's construction

We are now in a position to put the unit of the composite monad in concrete terms:



The resumption monad

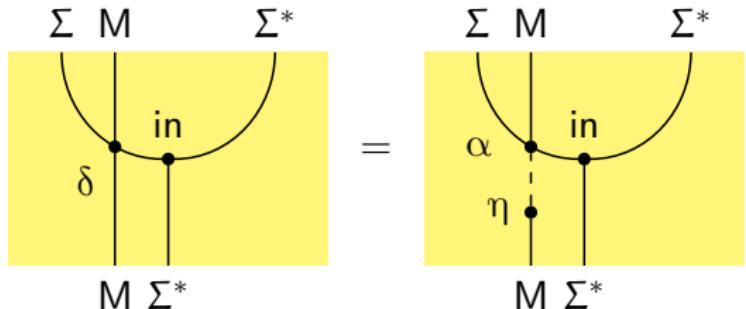
Invoking Huber's construction



The resumption monad

Explicit description

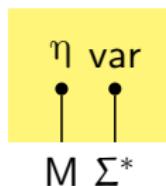
The counit can be described in terms of a fold for the following algebra:



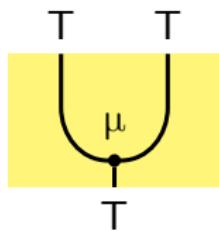
The resumption monad

Explicit description

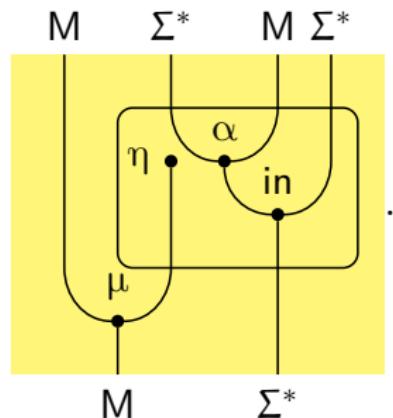
$=$



and



$=$



Further directions

Further elementary category theory with nice graphical perspectives, e.g.

- ▶ Universals and the Yoneda Lemma.
- ▶ Lots about distributive laws.
- ▶ Kan extensions and codensity monads.

Further directions

Other settings e.g.

- ▶ Monoidal categories, braided monoidal categories, symmetric monoidal categories...
- ▶ Double categories.
- ▶ Higher categories, and combinations of structures such as monoidal 2-categories.

Further directions

Applications e.g.

- ▶ Quantum theory / computation.
- ▶ Control theory.
- ▶ Linear algebra.
- ▶ Natural language semantics.
- ▶ Analog and digital electronics.

Further directions

Theory:

- ▶ PROs, PROPs, ...
- ▶ Coherence theorems.
- ▶ Expressivity, soundness and completeness results.

Further directions

Tools:

- ▶ Proof assistants.
- ▶ Diagramming tools.
- ▶ Diagramming libraries.