
String Diagrams for Elementary Category Theory
4: Putting it all together

Dan Marsden
Based on joint work with Ralf Hinze

April 5, 2023



Free monads
Free algebras

Definition (Free algebra functor)
In Lecture 2 we introduced the category of algebras for an
endofunctor Σ, which equips a given category 𝒞 with additional
structure. There is a forgetful functor, the underlying functor,

UΣ ∶ Σ-Alg(𝒞) → 𝒞
UΣ (A, a) ∶= A,

UΣ (h) ∶= h,

If it exists, the left adjoint to the forgetful functor sends an object
to the free algebra:

Σ-Alg(𝒞) 𝒞⊥
UΣ

FreeΣ FreeΣ A =∶ (Σ∗ A, in A)
FreeΣ f =∶ Σ∗ f

.



Free monads
Free algebras

Definition (Free algebra functor)
In Lecture 2 we introduced the category of algebras for an
endofunctor Σ, which equips a given category 𝒞 with additional
structure. There is a forgetful functor, the underlying functor,

UΣ ∶ Σ-Alg(𝒞) → 𝒞
UΣ (A, a) ∶= A,

UΣ (h) ∶= h,

If it exists, the left adjoint to the forgetful functor sends an object
to the free algebra:

Σ-Alg(𝒞) 𝒞⊥
UΣ

FreeΣ FreeΣ A =∶ (Σ∗ A, in A)
FreeΣ f =∶ Σ∗ f

.



Free monads
Free algebra intuitions and terminology

We can think of the endofunctor Σ a signature of operations. For
example if Σ (X) = X × X + 1, then a Σ-algebra on A is a
function of the form:

𝐴 × 𝐴 + 1 → 𝐴



Free monads
Free algebra intuitions and terminology

We can think of the endofunctor Σ a signature of operations. For
example if Σ (X) = X × X + 1, then a Σ-algebra on A is a
function of the form:

𝐴 × 𝐴 + 1 → 𝐴

Which is equivalent to two functions:

𝐴 × 𝐴 → 𝐴 and 1 → 𝐴



Free monads
Free algebra intuitions and terminology

We can think of the endofunctor Σ a signature of operations. For
example if Σ (X) = X × X + 1, then a Σ-algebra on A is a
function of the form:

𝐴 × 𝐴 + 1 → 𝐴

Which is equivalent to two functions:

𝐴 × 𝐴 → 𝐴 and 1 → 𝐴

As a function of type 1 → A encodes an element of A, this is
equivalent to choosing a binary function A × A → A, which we
shall denote + an an element of A, which we shall denote 0.



Free monads
Free algebra intuitions and terminology

Example
For our example Σ, the following are algebras:

▶ The natural numbers, with + interpreted by addition, and 0
by zero.

▶ The natural numbers, with + interpreted by multiplication,
and 0 by 33.

▶ The set of all strings of natural numbers, with +
concatenation, and 0 the empty string.

▶ The set of all strings of natural numbers, with +
concatenation, and 0 the string [33].



Free monads
Free algebra intuitions and terminology

For our example Σ, the forgetful functor does have a left adjoint.
Σ∗ A consists of all terms of the form:

0, a, (0 + a) + 0, a + a, ...

The free algebra structure map

in A ∶ ΣΣ∗ A → Σ∗ A

picks out as constant element the term 0, and the binary operation
is formal addition:

(s, t) ↦ s + t



Free monads
Free algebra intuitions and terminology

Further structure:
▶ The unit of the adjunction, var A ∶ A → Σ∗ A, turns an

element of A into the term for the corresponding variable.
▶ The counit ϵ (A, a) ∶ FreeΣ A → (A, a) evaluates a term using

the operations of a given algebra.
This intuitive pattern repeats for different choices of Σ.



Free monads
Folds

We introduce shorthand for the evaluation map:

UΣ (ϵ (A, a)).

This is an arrow in the underlying category, which we shall denote
a , and pronounce “fold a:

a ∶ ΣA → A
a ∶ Σ∗ A → A

.



Free monads
Folds

For an algebra:

a

A

AΣ

we can depict a as follows:

a

A

AΣ∗

∶= ϵ
FreeΣ UΣUΣ

UΣ

(A, a)

(A, a)

=∶
a

A

AΣ∗



Free monads
The free / forgetful adjunction

The universal property of the free / forgetful adjunction can be
unpacked in terms of the base category as

h
B

AΣ∗

=

B

AΣ∗

b
g

⟺

B

A
var

h
= g

B

A
,

for all Σ-homomorphisms h ∶ FreeΣ A → (B, b) and all arrows
g ∶ A → B.



Free monads
The free / forgetful adjunction

We have the following two computation rules:

A

A
var

a
=

A

A

,

A

AΣ∗

in
Σ

a
=

A

AΣ∗Σ

a
a

.



Free monads
The free / forgetful adjunction

Naturality of the counit gives rise to the elevation rule:

B

AΣ

h
a =

B

AΣ

b
h

⟹

B

AΣ∗

h
a =

B

AΣ∗

b
h



Free monads
Algebras of endofunctors and monads

If we apply Huber’s construction to the adjunction FreeΣ ⊣ UΣ, we
obtain the so-called free monad of a functor: (Σ∗, var, sub)
where sub = in .



Free monads
Algebras of endofunctors and monads

Substitution plays nicely with evaluation. Combining the second
computational rule with elevation gives:

A

AΣ∗

sub
Σ∗

a
=

A

AΣ∗Σ∗

a
a

,

Combining this observation with the first computation rule, it tells
us that for every Σ-algebra (A, a), (Σ∗ A, a ) is an
Eilenberg–Moore algebra. That this mapping preserves
homomorphisms follows from the elevation rule.



Free monads
Algebras of endofunctors and monads

▶ Fold yields a functor Up ∶ Σ-Alg(𝒞) → 𝒞Σ∗ .

▶ It turns out that every Σ∗ Eilenberg–Moore algebra arises this
way.

▶ Categorically, the category of Σ-algebras is isomorphic to the
Eilenberg–Moore category of the free monad Σ∗:

Up ∶ Σ-Alg(𝒞) ≅ 𝒞Σ∗ ∶ Dn

To see this, we first define Dn ∶ 𝒞Σ∗ → Σ-Alg(𝒞).



Free monads
Algebras of endofunctors and monads

▶ Fold yields a functor Up ∶ Σ-Alg(𝒞) → 𝒞Σ∗ .
▶ It turns out that every Σ∗ Eilenberg–Moore algebra arises this

way.

▶ Categorically, the category of Σ-algebras is isomorphic to the
Eilenberg–Moore category of the free monad Σ∗:

Up ∶ Σ-Alg(𝒞) ≅ 𝒞Σ∗ ∶ Dn

To see this, we first define Dn ∶ 𝒞Σ∗ → Σ-Alg(𝒞).



Free monads
Algebras of endofunctors and monads

▶ Fold yields a functor Up ∶ Σ-Alg(𝒞) → 𝒞Σ∗ .
▶ It turns out that every Σ∗ Eilenberg–Moore algebra arises this

way.
▶ Categorically, the category of Σ-algebras is isomorphic to the

Eilenberg–Moore category of the free monad Σ∗:

Up ∶ Σ-Alg(𝒞) ≅ 𝒞Σ∗ ∶ Dn

To see this, we first define Dn ∶ 𝒞Σ∗ → Σ-Alg(𝒞).



Free monads
Algebras of endofunctors and monads

We can map Eilenberg–Moore to Σ-algebras algebras exploiting the
computation rules, reversing Up in the process:

A

A
var

in

Σ

a

{
se

co
nd

co
m

p.
ru

le
}

=
A

A
var

Σ

a
a

{
fir

st
co

m
p.

ru
le

}

=

a

Σ

A

A

.



Free monads
Algebras of endofunctors and monads

So precomposing with the following map takes Eilenberg–Moore to
Σ-algebras:

emb

Σ

Σ∗

∶=
var

in

Σ

Σ∗

.



Free monads
Algebras of endofunctors and monads

That precomposing with emb preserves homomorphisms is
straightforward:

B

AΣ

h
a

emb

{
EM

-a
lg

.
m

or
ph

ism
}

=

B

AΣ

b

hemb .



Free monads
Algebras of endofunctors and monads

We have two identity on morphisms functors:

Up (A, a ∶ ΣA → A) = (A, a ) Up h = h,
Dn (B, b ∶ Σ∗ B → B) = (B, b ⋅ emb B) Dn h = h.

Dn∘Up = Id by design. It remains to show Up∘Dn = Id. We need
to prove that b ⋅ emb B = b.



Free monads
Algebras of endofunctors and monads

We would like to use the free algebra universal property. To do so,
we must show that Eilenberg–Moore algebra b ∶ Σ∗ B → B is a
Σ-homomorphism (Σ∗ B, in B) → (B, b ⋅ emb B):

bB

B
in

Σ Σ∗

{
D

n∘
Up

=
Id

}

=
b

sub
emb

Σ Σ∗

{
b

re
sp

ec
ts

su
b

}

=

Σ

emb

Σ∗

b

b {
na

tu
ra

lit
y

}

= B

B

Σ

emb

Σ∗

b

b



Free monads
Algebras of endofunctors and monads

Therefore we can then appeal to the universal property:

b

B

BΣ∗

=

B

BΣ∗

b ⋅ emb B
⟺

B

B
var

b
=

B

B

.

Applying the first computation rule completes the proof of the
isomorphism

Up ∶ Σ-Alg(𝒞) ≅ 𝒞Σ∗ ∶ Dn.



The resumption monad
The challenge

The challenge
▶ Let M ∶ 𝒞 → 𝒞 be a monad and F ∶ 𝒞 → 𝒞 be an endofunctor;

we aim to show that M∘(F∘M)∗ is a monad.

▶ In fact, we shall generalise, and show that given a right
monad action α ∶ Σ∘M →̇ Σ, M∘Σ∗ is a monad.

▶ We recover the original result with Σ = F∘M and the monad
action:

μ

MM

MF

F



The resumption monad
The challenge

The challenge
▶ Let M ∶ 𝒞 → 𝒞 be a monad and F ∶ 𝒞 → 𝒞 be an endofunctor;

we aim to show that M∘(F∘M)∗ is a monad.
▶ In fact, we shall generalise, and show that given a right

monad action α ∶ Σ∘M →̇ Σ, M∘Σ∗ is a monad.

▶ We recover the original result with Σ = F∘M and the monad
action:

μ

MM

MF

F



The resumption monad
The challenge

The challenge
▶ Let M ∶ 𝒞 → 𝒞 be a monad and F ∶ 𝒞 → 𝒞 be an endofunctor;

we aim to show that M∘(F∘M)∗ is a monad.
▶ In fact, we shall generalise, and show that given a right

monad action α ∶ Σ∘M →̇ Σ, M∘Σ∗ is a monad.
▶ We recover the original result with Σ = F∘M and the monad

action:

μ

MM

MF

F



The resumption monad
The plan

We have the following structure available to us:

Σ-Alg(𝒞) 𝒞⊥
UΣ

FreeΣ

M .

▶ This looks close to the Huber situation, but M lives at the
“wrong end”.

▶ If we have a monad M ∶ Σ-Alg(𝒞) → Σ-Alg(𝒞), we could
apply Huber’s construction, giving a monad UΣ∘M∘FreeΣ.

▶ If additionally, UΣ∘M = M∘UΣ, then we have:

UΣ∘M∘FreeΣ = M∘UΣ∘FreeΣ = M∘Σ∗.



The resumption monad
The plan

We have the following structure available to us:

Σ-Alg(𝒞) 𝒞⊥
UΣ

FreeΣ

M .

▶ This looks close to the Huber situation, but M lives at the
“wrong end”.

▶ If we have a monad M ∶ Σ-Alg(𝒞) → Σ-Alg(𝒞), we could
apply Huber’s construction, giving a monad UΣ∘M∘FreeΣ.

▶ If additionally, UΣ∘M = M∘UΣ, then we have:

UΣ∘M∘FreeΣ = M∘UΣ∘FreeΣ = M∘Σ∗.



The resumption monad
The plan

We have the following structure available to us:

Σ-Alg(𝒞) 𝒞⊥
UΣ

FreeΣ

M .

▶ This looks close to the Huber situation, but M lives at the
“wrong end”.

▶ If we have a monad M ∶ Σ-Alg(𝒞) → Σ-Alg(𝒞), we could
apply Huber’s construction, giving a monad UΣ∘M∘FreeΣ.

▶ If additionally, UΣ∘M = M∘UΣ, then we have:

UΣ∘M∘FreeΣ = M∘UΣ∘FreeΣ = M∘Σ∗.



The resumption monad
The plan

We have the following structure available to us:

Σ-Alg(𝒞) 𝒞⊥
UΣ

FreeΣ

M .

▶ This looks close to the Huber situation, but M lives at the
“wrong end”.

▶ If we have a monad M ∶ Σ-Alg(𝒞) → Σ-Alg(𝒞), we could
apply Huber’s construction, giving a monad UΣ∘M∘FreeΣ.

▶ If additionally, UΣ∘M = M∘UΣ, then we have:

UΣ∘M∘FreeΣ = M∘UΣ∘FreeΣ = M∘Σ∗.



The resumption monad
How to build a suitable M

A natural transformation δ ∶ Σ∘M →̇ M∘Σ induces a functor M
with action:

a
A

AΣ

↦

M

M

A

AΣ
δ

a
.

With:

UΣ∘M (A, a) = UΣ (M (A), M (a) ⋅ δA) = M (A) = M∘UΣ (A, a).



The resumption monad
How to build a suitable M

This operation preserves homomorphisms as:

BM

AMΣ

h a

δ

{
h

a
Σ

-m
or

.
}
=

BM

AMΣ

b

h
δ

.

Preservation of identities and composition is then immediate as M
does.



The resumption monad
Building a suitable δ

Given a right monad action α ∶ Σ∘M →̇ Σ, we can build a suitable
δ as the composite:

δ

ΣM

MΣ

∶=

M

Σ M

Σ

η α .



The resumption monad
Lifted unit and multiplication

To show that each component of η ∶ Id →̇ M,

η (A, a) ∶ (A, a) → (M A, M a ⋅ δ A),

is a homomorphism, we simply apply the unit action law:

M

η

Σ

a

A

A

{
α

re
sp

ec
ts

η
}

= M

Σ
η

a

A

A

η α .



The resumption monad
Lifted unit and multiplication

Likewise, to establish that each component of μ ∶ M∘M →̇ M,

μ (A, a) ∶ (M (M A), M (M a) ⋅ M (δ A) ⋅ δ (M A)) → (M A, M a ⋅ δ A),

is a homomorphism, we reason

μ

M

Σ

a

M M

A

A

α

η

η

α

{
η

m
on

ad
un

it
}

=
M

Σ

a

M M

A

A

η α

α

{
α

re
sp

ec
ts

μ
}

=
M

Σ
μ

a

M M

A

A

η α

.



The resumption monad
Invoking Huber’s construction

By construction, η and μ satisfy the following equations:

η

MU

U

=
η

M U

U
μ

M M

MU

U

=
μ

MM

M U

U

.



The resumption monad
Invoking Huber’s construction

By adding explicit identity natural transformations, we get a more
statisfactory rendition:

η

M

U

Uid
=

η

M

U

U

μ
U

U

M

M M

id

= U

U

M
μ

M M

id
id .



The resumption monad
Invoking Huber’s construction

We are now in a position to put the unit of the composite monad
in concrete terms:

η

η

MU F

{
ty

pe
ca

st
}

=

η

η

M U F
id

{
un

it
id

en
tit

ies
}

=

η

η

M U F

{
de

f.
of

va
r}

=

η var

M Σ∗

.



The resumption monad
Invoking Huber’s construction

μ

ϵ
Fr UMU M Fr

MU Fr

{
ty

pe
ca

st
}

=

μ

ϵ
Fr UM M

M U Fr

FrU

id

{
m

ul
t.

id
en

tit
ies

}

=

μ

ϵ
Fr UM M

M U Fr

FrU

id

id

{
re

dr
aw

}

=
μ

ϵ

Fr UM M

M U Fr

FrU

id

id

.



The resumption monad
Explicit description

The counit can be described in terms of a fold for the following
algebra:

in

Σ∗

Σ Σ∗M

M

δ
= in

Σ∗

Σ Σ∗M

M

η
α .



The resumption monad
Explicit description

η

T

= var

Σ∗

η

M

and μ

T

T T

=

μ

M

η α
in

Σ∗

Σ∗

M Σ∗ M

.



Further directions

Further elementary category theory with nice graphical
perspectives, e.g.

▶ Universals and the Yoneda Lemma.
▶ Lots about distributive laws.
▶ Kan extensions and codensity monads.



Further directions

Other settings e.g.
▶ Monoidal categories, braided monoidal categories, symmetric

monoidal categories...
▶ Double categories.
▶ Higher categories, and combinations of structures such as

monoidal 2-categories.



Further directions

Applications e.g.
▶ Quantum theory / computation.
▶ Control theory.
▶ Linear algebra.
▶ Natural language semantics.
▶ Analog and digital electronics.



Further directions

Theory:
▶ PROs, PROPs, ...
▶ Coherence theorems.
▶ Expressivity, soundness and completeness results.



Further directions

Tools:
▶ Proof assistants.
▶ Diagramming tools.
▶ Diagramming libraries.


