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Adjunctions
Given a functor F : C→ D, is there a way of traveling back in the
other direction?

1. If we want to get back to exactly where we started, We could
just ask for an inverse functor

F◦F◦ = Id and Id = F◦◦F.

2. If just want to to get back to somewhere isomorphic to our
starting point, We could require a functor G : D→ C such
there are natural isomorphisms

F◦G ∼̇= Id and Id ∼̇= G◦F.

3. If we only require that there is a morphism relating the start
and end points of a round trip, there are two sensible choices:

F◦G →̇ Id and Id →̇ G◦F
F◦G ←̇ Id and Id ←̇ G◦F
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Adjunctions
Convenient graphical definition

Definition
Functor L : D→ C is left adjoint to functor R : C→ D, written
L a R : C ⇀ D, if there exist unit (cap) and counit (cup) natural
transformations:

η

R L

and ε

L R
.

such that the following snake equations hold:

L

ε
η

L

=

L

L

and

R

η
ε

R

=

R

R

.
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Adjoints
Example

Let Mon be the category of monoids and monoid homomorphisms.

I There is a forgetful functor U : Mon→ Set such that
U (X , 1,×) 7→ X .

I There is a functor F : Set→Mon mapping set X to the
monoid with underlying set L (X), unit the empty list, and
multiplication list concatenation.

I There is a unit η : Id →̇ UF with component at set X

ηX x = [x ].

I There is a counit ε : FU →̇ Id, with component at monoid
(X , 1,×)

ε (X , 1,×) [x1, ..., xn ] = 1× x1 × ...× xn.
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Adjoints are canonical

Right adjoints are determined up to isomorphism
Let L1 a R1, L2 a R2 : C ⇀ D be two parallel adjunctions. Then

L1 ∼= L2 ⇐⇒ R1 ∼= R2.
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Right adjoints are determined up to isomorphism
Let L1 a R1, L2 a R2 : C ⇀ D be two parallel adjunctions. Then

L1 ∼= L2 ⇐⇒ R1 ∼= R2.

If σ witnesses the isomorphism of the left adjoints, then the natural
isomorphism for the right adjoints is given by two “fake” snakes:

R2

η2

σ◦ ε1

R1

and

R1

η1
σ ε2

R2

.
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Adjoints compose

Given a pair of adjunctions with units and counits,

ε

L R

η

R L

and ε′

L′ R′

η′

R′ L′

,

then L◦L′ a R′◦R.



Adjoints compose

We can build candidate cups and caps by nesting:

ε′

L′ R′

ε

L R

η

R L

η′

R′ L′

.



Adjoints compose

The first equation is shown as follows:
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η′

L′

L
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Adjoints compose

The second snake equation follows similarly:

R

η

ε

R
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η′

ε′

R′
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R′

R′

R

R
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Adjunctions and bending wires

For an adjunction L a R : C ⇀ D, by “bending wires” using the
cup and cap, we have the following relationship:

B

AL

f
=

B

A

g
ε

L

⇐⇒

B

A

f
η

R

=

BR

A

g
.



Adjunctions and bending wires

This “wire bending” establishes a bijection between morphisms of
types L A→ B and A→ R B. We shall write f (L a R) g if f and g
are related by this bijection, or f a g if the adjunction is clear from
the context. Pictorially:

B

AL

f
a

BR

A
g

.

We say f is the left transpose of g , and g is the right transpose
of f .



Adjunctions and bending wires

The “wire bending” relationship is natural in the sense that:

B

AL

f
a

BR

A
g

=⇒

B

k

h

AL

f
a

BR

k

h

A
g

.



Adjunctions and bending wires

We have shown that taking transposes yields a natural bijection
between collections of arrows:

L A→ B : C ∼= A→ R B : D.

The maps witnessing the bijection, written b−c and d−e, are called
adjoint transpositions:

f : L A→ B : C

bf c : A→ R B : D

dge : L A→ B : C

g : A→ R B : D
.

In fact, having such a bijection is equivalent to our previous
definition of adjunction.



Transposes yield cups caps and snake equations

We can introduce a box notation to denote transposition maps in
string diagrams:

g

L

h

A

Id

k

D

= g

L

h

A

Id

k

D

and g

Id

h

A

R
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h

A
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D



Transposes yield cups caps and snake equations

A more suggestive rendition highlights the naturality property:

g

L A

R

Id B

and
f

L

Id A

R B



Transposes yield cups caps and snake equations

Pictorially, the fact that transpositions are mutually inverse
appears as:

gR

A

BR

Id

= g

A

BR

(and the similar equation when the transpositions are applied in
the other order).



Transposes yield cups caps and snake equations

We can then define the components of putative units and counit
componentwise as follows:

A

ALR

and

A

ARL



Transposes yield cups caps and snake equations

Naturality of the unit is easy to verify:

A

h

BLR

{
tr
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h

BLR
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A

h

BLR

The naturality of the counit is verified similarly.



Transposes yield cups caps and snake equations
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Transposes yield cups caps and snake equations
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Transposes yield cups caps and snake equations
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Lifting adjunctions
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Lifting adjunctions
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Huber’s construction
Recall a monad on C consists of an endofunctor M : C→ C, and
unit and multiplication natural transformations:

η

M

and µ

M

M M

.

such that:

η

µ

M

M

=

M

M

=

η

µ

M

M
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M
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.



Huber’s construction

Now assume we have a monad with unit and multiplication:

η

M

and µ

M

M M

,

and an adjunction L a R : C ⇀ D with unit and counit:

η

R L

and ε

L R
.

Is there a natural way to build a monad on T := R◦M◦L?



Huber’s construction

It seems natural to form the composites:

η

T

:= η

η

MR L

µ

T T

T

:=
µ

ε
L RMR M L

MR L

.



Huber’s construction
To verify one of the monad unit axioms, we calculate:
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.



Huber’s construction

T
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Huber’s construction

Special case, every adjunction induces a monad with unit and
multiplication:

id

η

IdR L

and

ε

L RIdR Id L

IdR L

id
.



Huber on monad morphisms

Given a monad morphism τ : S→ T, we might expect the
composite

SR L

τ

TR L
is also a monad morphism.



Huber on monad morphisms
Verifying the unit axiom:

η

η

τ

TR L {
m

.
m

.
un

it
}

=

η

η

TR L

,

and for the multiplication axiom:

µ

ε
L RSR S L

τ

TR L

{
m

.
m

.
m

ul
t.

}

=

µ

ε
L RSR S L

TR L

τ τ .



Huber on monad morphisms

Example
Units As a special case, we get a monad morphism
R◦L→ R◦M◦L:

R L

η

MR L

explicitly
IdR L

η

MR L



Next time

Applications!


