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Given a functor F : € — D, is there a way of traveling back in the
other direction?
1. If we want to get back to exactly where we started, We could
just ask for an inverse functor

FoF° =1Id and Id = F°oF.

2. If just want to to get back to somewhere isomorphic to our
starting point, We could require a functor G : D — € such
there are natural isomorphisms

FoG=Id and Id = GoF.

3. If we only require that there is a morphism relating the start
and end points of a round trip, there are two sensible choices:

FoG = Id and Ild = GoF
FoG <« 1d and Id < GoF
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Convenient graphical definition
Definition
Functor L : D — € is left adjoint to functor R : € — D, written
L4 R: € — D, if there exist unit (cap) and counit (cup) natural
transformations:
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L L R
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Adjoints
Example
Let Mon be the category of monoids and monoid homomorphisms.

» There is a forgetful functor U : Mon — Set such that
U((X,1,x)— X.

» There is a functor F : Set — Mon mapping set X to the
monoid with underlying set L (X), unit the empty list, and
multiplication list concatenation.

» There is a unit n : Id = UF with component at set X

nXx=[x].

» There is a counit € : FU = Id, with component at monoid
(X, 1, x)

(X, 1, X)[X1, .y Xn] = 1 X X1 X oo X Xp.



Adjoints are canonical

Right adjoints are determined up to isomorphism
Let L1 4R1,Lp 4Ry : € — D be two parallel adjunctions. Then

Li =Ll <= Ri=Ro.



Adjoints are canonical

Right adjoints are determined up to isomorphism
Let L1 4R, L 4Ry : € — D be two parallel adjunctions. Then

ngLQ <~ ngRz.

If o witnesses the isomorphism of the left adjoints, then the natural
isomorphism for the right adjoints is given by two “fake” snakes:

Rl R2

n2 N1

and



Adjoints are canonical

Right adjoints are determined up to isomorphism
Let L1 4Ry,Lp 4Ry : € — D be two parallel adjunctions. Then

L1§L2 < ngRQ.
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Adjoints are canonical

Right adjoints are determined up to isomorphism
Let L1 4R1, Lo 4Ry : € — D be two parallel adjunctions. Then

L1%L2 <~ ngRz.

Rl Rl

M1 N1

€1 €1

I {oiso}

Rl Rl



Adjoints are canonical

Right adjoints are determined up to isomorphism
Let L1 4R1, Lo 4Ry : € — D be two parallel adjunctions. Then

Li =L, «<— R;i=R,.
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Adjoints compose

Given a pair of adjunctions with units and counits,

L R L’ R’
@ I~ e Y
R L R/ L/

then LoL’ 4 R'oR.



Adjoints compose

We can build candidate cups and caps by nesting:

LL RR

€

R’ R L L



Adjoints compose

The first equation is shown as follows:

L L L L

{ snakes twice }

L L L L



Adjoints compose

The second snake equation follows similarly:

R' R

R’ R

{ snakes twice }




Adjunctions and bending wires

For an adjunction L 4R : € — D, by "bending wires” using the
cup and cap, we have the following relationship:

L A L A A A
g g
f . f
B B R B R B



Adjunctions and bending wires

This “wire bending"” establishes a bijection between morphisms of
types LA — B and A — R B. We shall write f (L 4R) g if f and g
are related by this bijection, or f 4 g if the adjunction is clear from
the context. Pictorially:

B R B

We say f is the left transpose of g, and g is the right transpose
of f.



Adjunctions and bending wires

The “wire bending” relationship is natural in the sense that:

L A A L A A
g h he g
- = — .
f k¢ f k
B R B B R B



Adjunctions and bending wires

We have shown that taking transposes yields a natural bijection
between collections of arrows:

LA—-B:¢ =2 A—RB:D.

The maps witnessing the bijection, written |—] and [—], are called
adjoint transpositions:

f:LA—>B:¢C [g]:LA—B:¢C
|f|:A—=RB:D g:A—-RB:D

In fact, having such a bijection is equivalent to our previous
definition of adjunction.



Transposes yield cups caps and snake equations

We can introduce a box notation to denote transposition maps in
string diagrams:

L A L A Id A id A
e = ST
| Ry | th
Hg — " g| and &%g — /
| k I : * k
T | IRE |
id D Id D R D R D



Transposes yield cups caps and snake equations

A more suggestive rendition highlights the naturality property:




Transposes yield cups caps and snake equations

Pictorially, the fact that transpositions are mutually inverse

appears as:
Id A A

3@] B ¢
R B R B

(and the similar equation when the transpositions are applied in
the other order).



Transposes yield cups caps and snake equations

We can then define the components of putative units and counit
componentwise as follows:



Transposes yield cups caps and snake equations

Naturality of the unit is easy to verify:

— —
A 2 A 2 A
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The naturality of the counit is verified similarly.



Transposes yield cups caps and snake equations

Il { definition }




Transposes yield cups caps and snake equations

Il { transposition naturality }



Transposes yield cups caps and snake equations
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Lifting adjunctions

L A L A A A
B B R B R B



Lifting adjunctions

L A L A A A




Huber’'s construction

Recall a monad on € consists of an endofunctor M : € — €, and
unit and multiplication natural transformations:

M M
In and w
M M
such that:
M M M M MM MM M
n n 38 38
0 = = vl and i = U8 .
M M M M

M



Huber’'s construction

Now assume we have a monad with unit and multiplication:
M M
In and w ,
M M
and an adjunction L 4R : € —= D with unit and counit:

L R

- @

Is there a natural way to build a monad on T := RoMolL?



Huber's construction

It seems natural to form the composites:

i
_JS




Huber's construction
To verify one of the monad unit axioms, we calculate:

T RML

Il { definitions }

RML
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Huber's construction

T T T RML RMLRML

L

{ definition }

T RML
RMLRML RML T T T

&

L

{ monad assoc. }
{ definition }

RML




Huber’'s construction

Special case, every adjunction induces a monad with unit and
multiplication:




Huber on monad morphisms

Given a monad morphism T:S — T, we might expect the

composite
RS L
I
R T

L

is also a monad morphism.



Huber on monad morphisms
Verifying the unit axiom:

~—

n S 7
n € n
SR

RTL ~RTL

and for the multiplication axiom:
RS L RSL

Sk

RSL RSL

7

m. mult. }




Huber on monad morphisms

Example

Units As a special case, we get a monad morphism
RolL — RoMolL:

R L R
’ T 11‘ explicitly ’
RML R

T—--&
=
r—nr



Next time

Applications!



