

String Diagrams - Exercise Sheet 3

Exercise 1

For adjunctions $L \dashv R : \mathcal{C} \rightarrow \mathcal{D}$ and $L' \dashv R' : \mathcal{C}' \rightarrow \mathcal{D}'$, and functors $F : \mathcal{D} \rightarrow \mathcal{D}'$ and $G : \mathcal{C} \rightarrow \mathcal{C}'$, show that there are bijections between the sets of natural transformations of type:

1. $L' \circ F \rightarrow G \circ L$.
2. $F \rightarrow R' \circ G \circ L$.
3. $L' \circ F \circ R \rightarrow G$.
4. $F \circ R \rightarrow R' \circ G$.

Exercise 2

Show that if $L \dashv R : \mathcal{C} \rightarrow \mathcal{D}$ then L carries the structure of a *right* M -action, where $M = R \circ L$ is the monad structure given by Huber's construction.

Exercise 3

Part I

Show that if $R : \mathcal{C} \rightarrow \mathcal{D}$ is a monad, and $L \dashv R$, then L carries the structure of a comonad.

Part II

Show that, for the same conditions as the previous part, L carries the structure of a *right* R -action.

Exercise 4

Two categories \mathcal{C} and \mathcal{D} are **equivalent**, written $\mathcal{C} \simeq \mathcal{D}$, if there is a pair of functors $F : \mathcal{C} \rightarrow \mathcal{D}$ and $G : \mathcal{C} \leftarrow \mathcal{D}$ and a pair of natural isomorphisms $\alpha : F \circ G \cong \text{Id}_{\mathcal{D}}$ and $\beta : G \circ F \cong \text{Id}_{\mathcal{C}}$.

Part I

Draw the string diagrams showing α and β are isomorphisms.

Part II

Categories \mathcal{C} and \mathcal{D} are said to be **adjoint equivalent**, written $F \dashv G : \mathcal{C} \simeq \mathcal{D}$ if functors F and G form an adjunction $F \dashv G : \mathcal{C} \rightarrow \mathcal{D}$ where the unit and counit are both isomorphisms.

Show that every pair of functors witnessing an equivalence also witness an adjoint equivalence.